b-1.1, r. 2 - Construction Code

Full text
Updated to 1 March 2022
This document has official status.
chapter B-1.1, r. 2
Construction Code
Building Act
(chapter B-1.1, ss. 173, 176, 176.1, 178, 179, 185 and 192).
The fees prescribed in the Regulation have been indexed as of 1 January 2022 pursuant to the notices published in Part 1 (French) of the Gazette officielle du Québec of 20 November 2021, pages 665 to 667. (ss. 2.17, 3.06 [2.2.5.1], 5.05 [2-008], 8.14, 9.14)
See Chapter III of the Regulation respecting the temporary implementation of the amendments made by chapter 7 of the Statutes of 2021 in connection with the management of flood risks (chapter Q-2, r. 32.2)
CHAPTER I
BUILDING
O.C. 953-2000, c. I; O.C. 293-2008, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
DIVISION I
SCOPE
O.C. 953-2000, Div. I; O.C. 293-2008, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.01. In this chapter, unless the context indicates otherwise, Code means the National Building Code of Canada 2015” (NRCC 56190), published by the Canadian Commission on Building and Fire Codes, National Research Council of Canada, including revisions and errata of September 2018 published by that body.
The Code is incorporated into this Chapter by reference, subject to the amendments specified in section 1.09.
O.C. 953-2000, s. 1; O.C. 961-2002, s. 1; O.C. 120-2006, s. 9; O.C. 293-2008, s. 1; O.C. 939-2009, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.02. Subject to the exemptions in section 1.04, this Chapter applies to all construction work that is performed on a building to which the Building Act (chapter B-1.1) applies and to any facility intended for use by the public designated in section 1.03 and to the vicinity of that building or facility.
For the purposes of this Division, the definitions set out in the Code apply, unless otherwise provided.
O.C. 953-2000, s. 2; O.C. 961-2002, s. 1; O.C. 293-2008, s. 1; O.C. 858-2012, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.021. (Replaced).
O.C. 858-2012, s. 1; O.C. 347-2015, s. 1.
1.022. (Replaced).
O.C. 858-2012, s. 1; O.C. 347-2015, s. 1.
1.03. The following facilities are intended for use by the public for the purposes of section 10 of the Building Act (chapter B-1.1):
(1)  stands, grandstands or exterior terraces whose highest point, above the ground, is more than 1.2 m and whose load capacity is more than 60 persons;
(2)  tents or air-supported structures used
(a)  as dwellings or care, treatment or detention occupancies whose floor area is 100 m2 or more; or
(b)  as assembly occupancies or mercantile occupancies whose floor area is more than 150 m2 or whose load capacity is more than 60 persons;
(3)  belvederes built with materials other than backfill and constituted of horizontal platforms linked by their construction elements whose total area is more than 100 m2 or whose load capacity is more than 60 persons including access facilities.
O.C. 953-2000, s. 3; O.C. 961-2002, s. 1; O.C. 293-2008, s. 1; O.C. 1263-2012, s. 2; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.04. The following buildings, other than private seniors’ residences, are exempted from the application of this Chapter if used solely for one of the major occupancies provided for in the Code:
(1)  an assembly occupancy not covered by subparagraph 6 that accommodates not more than 9 persons;
(2)  a care or detention occupancy that constitutes
(a)  a prison;
(b)  a supervised education centre with or without detention facilities used to shelter or accommodate not more than 9 persons; or
(c)  a convalescent home, a care occupancy or assistance occupancy or a rehabilitation centre used to shelter or accommodate not more than 9 persons;
(3)  a residential occupancy that constitutes
(a)  a rooming house or an outfitter offering no lodgings that has not more than 9 rooms;
(b)  a single-family dwelling in which a bed and breakfast is operated by a natural person, which is also used as the person’s residence, having not more than 5 bedrooms offered for rent;
(c)  a single-family dwelling in which a school that accommodates less than 15 students at a time is operated by a natural person, which is also used as the person’s residence;
(d)  a monastery, a convent or a novitiate whose owner is a religious corporation incorporated under a special Act of Québec or the Religious Corporations Act (chapter C-71), where that building or part of the building divided by a firewall is occupied by not more than 30 persons and has not more than 3 storeys in building height;
(e)  a shelter used to shelter or accommodate not more than 9 persons; or
(f)  a building used as a dwelling unit having
i.  not more than 2 storeys in building height; or
ii.  not more than 8 dwelling units;
(4)  a business and personal services occupancy having not more than 2 storeys in building height;
(5)  a mercantile occupancy having a total floor area of not more than 300 m2;
(6)  a day care centre used to shelter or accommodate not more than 9 persons;
(7)  a subway station;
(8)  an agricultural facility; and
(9)  an industrial occupancy.
Despite the exemption provided for in the first paragraph, the energy efficiency requirements contained in Part 11 of the Code apply to the construction work performed on every building
(1)  having a building area not more than 600 m2;
(2)  having a building height not more than 3 storeys; and
(3)  having a Group C major occupancy and housing only dwelling units.
O.C. 953-2000, s. 4; O.C. 961-2002, s. 2; O.C. 872-2005, s. 1; O.C. 293-2008, s. 1; O.C. 858-2012, s. 2; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
DIVISION II
REFERENCES
O.C. 953-2000, Div. II; O.C. 293-2008, s. 1; O.C. 858-2012, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.05. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 953-2000, s. 5; O.C. 961-2002, s. 3; O.C. 293-2008, s. 1; O.C. 858-2012, s. 3; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
DIVISION III
PREFABRICATED BUILDINGS
O.C. 953-2000, Div. III; O.C. 293-2008, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.06. In this Division, prefabricated building means any building all of whose sections or panels are manufactured.
O.C. 953-2000, s. 6; O.C. 961-2002, s. 4; O.C. 293-2008, s. 1; O.C. 939-2009, s. 2; O.C. 858-2012, s. 4; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.07. A prefabricated building must not be sold, rented, exchanged or acquired, unless it has been certified to CAN/CSA Standard A277, Procedure for certification of prefabricated buildings, modules, and panels, published by the Canadian Standards Association.
O.C. 953-2000, s. 7; O.C. 961-2002, s. 4; O.C. 293-2008, s. 1; O.C. 858-2012, s. 5; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.08. Every prefabricated building that has received certification by a certification organization accredited by the Standards Council of Canada and whose certification seal or label attests to compliance with CAN/CSA Standard A277, Procedure for certification of prefabricated buildings, modules, and panels, is deemed to be certified.
O.C. 293-2008, s. 1; O.C. 858-2012, s. 6; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
DIVISION IV
AMENDMENTS TO THE CODE
O.C. 293-2008, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.09. The amendments to the Code are as follows:
O.C. 293-2008, s. 1; O.C. 939-2009, s. 3; O.C. 858-2012, s. 7; O.C. 347-2015, s. 1; I.N. 2015-07-01; O.C. 990-2018, s. 1; O.C. 1419-2021, s. 1.
DIVISION V
OFFENCE
O.C. 293-2008, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.10. A contravention to any of the provisions of this Chapter constitutes an offence.
O.C. 293-2008, s. 1; O.C. 347-2015, s. 1; O.C. 1419-2021, s. 1.
1.11. (Replaced).
O.C. 293-2008, s. 1; O.C. 347-2015, s. 1.
CHAPTER I.1
ENERGY EFFICIENCY OF BUILDINGS
O.C. 486-2020, s. 1.
DIVISION I
INTERPRETATION
O.C. 486-2020, s. 1.
1.1.1. In this Chapter, unless the context indicates otherwise, Code means the “National Energy Code of Canada for Buildings 2015” (NRCC 56191), first printing, published by the Canadian Commission on Building and Fire Codes, National Research Council of Canada, excluding any later amendments, including errata, that may be published by that organization.
The Code is incorporated into this Chapter by reference, subject to the amendments specified in section 1.1.6.
For the purposes of this Division, the definitions set out in the Code apply, unless otherwise provided.
O.C. 486-2020, s. 1.
1.1.2. Subject to section 1.1.4, this Chapter applies to all construction work that is performed on a new building to which the Building Act (chapter B-1.1) applies and to the vicinity of that building.
It also applies to all construction work for new swimming pools designated as facilities intended for use by the public under section 10.03.
O.C. 486-2020, s. 1.
1.1.3. Subject to section 1.1.4, this Chapter applies to the addition work of existing buildings where, after that work, the building including its addition
(1)  has a building area of more than 600 m2 within the meaning of the National Building Code as adopted by Chapter I of the Construction Code;
(2)  has a building height of more than 3 storeys within the meaning of the National Building Code as adopted by Chapter I of the Construction Code; or
(3)  does not house only dwelling units.
O.C. 486-2020, s. 1.
1.1.4. This Chapter does not apply to the construction of
(1)  a building referred to in the second paragraph of section 1.04;
(2)  a greenhouse;
(3)  a building with a building area under 10 m2 within the meaning of the National Building Code as adopted by Chapter I of the Construction Code.
O.C. 486-2020, s. 1.
DIVISION II
AMENDMENTS TO THE CODE
O.C. 486-2020, s. 1.
1.1.5. A reference in this Chapter to a standard, including a code, is, as the case may be, a reference to that standard as adopted by a Chapter of the Construction Code (chapter B-1.1, r. 2), the Safety Code (chapter B-1.1, r. 3) or other regulation adopted under the Building Act (chapter B-1.1) referring to it.
O.C. 486-2020, s. 1.
1.1.6. The amendments to the Code are the following:
O.C. 486-2020, s. 1.
DIVISION III
OFFENCE
O.C. 486-2020, s. 1.
1.1.7. Any contravention of one of the provisions of this Chapter constitutes an offence.
O.C. 486-2020, s. 1.
CHAPTER II
GAS
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
DIVISION I
DEFINITIONS
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.01. In this Chapter, unless the context indicates otherwise,
gas means natural gas, biomethane, manufactured gas, and mixtures of propane gas and air, propane, propylene, butanes (normal butane and isobutane) and butylenes, and a mixture or a type of those gases; (gaz)
gas installation means a fixed or mobile installation, including its immediate piping, intended to use, store or distribute gas; (installation de gaz)
natural gas means natural gas, biomethane, mixtures of propane gas and air and a type or a mixture of those gases; (gaz naturel)
propane means a liquefied petroleum gas consisting mainly of propane, propylene, butane, butylene, a type or a mixture of those gases. (propane)
O.C. 875-2003, s. 1; O.C. 1172-2005, s. 1; O.C. 120-2006, s. 1; O.C. 991-2018, s. 1.
DIVISION II
SCOPE
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.02. This Chapter applies to construction work for a gas installation, including its surroundings.
It does not apply to an installation intended to use gas other than an installation used to produce energy, heat or light from a gas.
In addition, it does not apply to installations intended to
(1)  store or distribute gas by tank vehicle as long as the tank is not used as a storage tank at the point of use;
(2)  use gas to ensure the motive power of a vehicle;
(3)  use gas in a refinery, whatever its origin, as raw material for the petroleum refining process or a petrochemical plant;
(4)  store, in a refinery, gas resulting from the refining of petroleum;
(5)  store or use gas on boats;
(6)  use gas as a refrigerant;
(7)  store gas in underground natural formations or hollows in the ground; and
(8)  use or store on the premises gas collected from a landfill or gas from an anaerobic digester.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
DIVISION III
STANDARDS INCORPORATED BY REFERENCE
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.03. The following standards, published by CSA Group, are incorporated by reference into this Chapter subject to the amendments provided for in Division VII:
(1)  CSA B108, Compressed natural gas fuelling stations installation code;
(2)  CSA B149.1, Natural gas and propane installation code;
(3)  CSA B149.2, Propane storage and handling code;
(4)  CSA B149.3, Code for the field approval of fuel- related components on appliances and equipment;
(5)  CSA-Z276, Liquefied natural gas (LNG) - Production, storage and handling;
(6)  CAN/CSA-Z662, Oil and gas pipeline systems.
O.C. 875-2003, s. 1; O.C. 120-2006, s. 2; O.C. 1263-2012, s. 2; O.C. 991-2018, s. 1.
2.04. In this Chapter, a reference to a standard refers to the most recent edition and includes any subsequent amendments made to that edition.
However, the amendments and editions published after 15 November 2018 apply to gas installations only from the last day of the sixth month following the date of publication of the French and English versions of the texts. Where those versions are not published at the same time, the time limit runs from the date of publication of the last version.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
DIVISION IV
REFERENCES
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.05. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 875-2003, s. 1; O.C. 120-2006, ss. 1 and 3; O.C. 991-2018, s. 1; O.C. 1419-2021, s. 2.
DIVISION V
APPROVAL OF APPLIANCES AND EQUIPMENT
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.06. Any appliance or equipment used in a gas installation must be approved for the use for which it is intended.
It is prohibited to sell or lease an appliance or equipment that has not been approved. It is also prohibited, except for approval purposes, to use an appliance or equipment that has not been approved in an installation intended to use gas.
However, an appliance or equipment may, during an exhibition, a presentation or a demonstration, be used without prior approval, provided that it is accompanied by a notice with the following warning in characters measuring at least 15 mm: “WARNING: this material has not been approved for sale or lease as required under Chapter II of the Construction Code (chapter B-1.1, r. 2).”.
This section does not apply to the following appliances or equipment:
(1)  a manual appliance whose heat input does not exceed 20,000 Btu/h (5.86 kW) intended for industrial applications;
(2)  a Bunsen burner;
(3)  an internal combustion engine.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.07. Any appliance or equipment certified by a certification agency accredited by the Standards Council of Canada in the field of gas and whose affixation of a seal or label of approval or of certification of that agency attests compliance with Canadian standards, is deemed to be approved.
An appliance on which a label is affixed certifying that, without being certified by one of the agencies referred to in the first paragraph, that appliance is recognized by one of the agencies as complying with the construction and testing requirements of CSA Standard B149.3, is also deemed to be approved. However, approval is not required for each component of an appliance where the appliance has received overall approval.
For the purposes of this Chapter, certification or certified means recognition by a certification agency accredited by the Standards Council of Canada in the field of gas, by means of a label affixed on each certified appliance or equipment certifying that the appliance or equipment complies with the construction and testing requirements of the standards published by the standards development organizations accredited by the Standards Council of Canada to develop gas standards.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
DIVISION VI
DECLARATION OF WORK
O.C. 875-2003, a. 1; O.C. 991-2018, s. 1.
2.08. A contractor or an owner-builder in gas must declare to the Board the construction work the contractor or owner-builder has carried out and to which this Chapter applies, except construction work for an installation intended to distribute natural gas by pipeline and maintenance or repair work to a gas installation.
An owner-builder who keeps a register containing the information required by the declaration of work is exempt from that declaration.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.09. The declaration of work must contain
(1)  the address of the work site;
(2)  the name, address and telephone number of the person for whom the work is carried out;
(3)  the name, address, telephone number and licence number of the contractor or owner-builder in gas who carried out the work;
(4)  the dates scheduled for the beginning and end of the construction work;
(5)  the occupancy of the building and the number of stories and dwelling units;
(6)  the nature and type of work, in particular work for a new installation or alterations;
(7)  the number, heat input and nature of the appliances installed;
(8)  the type of gas and its state (gaseous or liquid);
(9)  the gas supply pressure of the gas installation; and
(10)  the date of the declaration.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.10. The work must be declared on the form provided for that purpose by the Board and be sent to the Board not later than the 20th day of the month that follows the date of the beginning of the work.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
DIVISION VII
 AMENDMENTS TO STANDARDS
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.11. CSA Standard B108 is amended
(1)  by replacing the first paragraph in Clause 2 by the following:
“The documents incorporated by reference into this Code are those indicated below and include any subsequent amendments and editions that may be published.
Despite the first paragraph, where a document indicated below is adopted by reference by a chapter of the Construction Code (chapter B-1.1, r. 2) or the Safety Code (chapter B-1.1, r. 3), or by another regulation of the Board, the document incorporated by reference into this Code is then the document as adopted by that chapter or regulation.”;
(2)  in Clause 3
(a)  by replacing the first sentence of the Clause by the following:
“Unless the context indicates otherwise, the following definitions shall apply in this Code:”;
(b)  by replacing the definition “Approved” by the following:
Approved: approved or authorized by the Régie du bâtiment du Québec under sections 2.06 and 2.07 of the Construction Code or section 127 or 128 of the Building Act (chapter B-1.1).”;
(c)  by replacing the definition “Authority having jurisdiction” by the following:
Authority having jurisdiction: Régie du bâtiment du Québec.”;
(d)  by striking out the definition “Certified”;
(3)  by adding the following after Clause 6.21:
“6.22. Every tank used to store and transport compressed natural gas shall be designed, manufactured, tested and marked in accordance with the most recent edition of CSA Standard B51, including any subsequent amendments to the Act respecting pressure vessels (chapter A-20.01) and its regulations that may be published.”.
O.C. 875-2003, s. 1; O.C. 1172-2005, s. 2; O.C. 120-2006, ss. 1 and 4; O.C. 991-2018, s. 1.
2.12. CSA Standard B149.1 is amended
(1)  by replacing Clause 1.1 by the following:
“1.1. This Code applies to
(a)  gas installations where gas is to be used for fuel purposes, subject to paragraph b;
(b)  piping and tubing systems extending from the termination of the gas undertaking’s installations for natural gas or from the distributor’s liquefied petroleum gas tanks; the termination of the gas undertaking’s installations is the point where its piping ends;
(c)  natural gas vehicle refuelling appliances and their equipment, excluding storage installations;
(d)  gas engines and turbines.”;
(2)  by revoking Clause 1.2;
(3)  by replacing Clause 1.3 by the following:
“1.3. Where the term gas is used, the requirements of this Code apply equally to and include any of the following gases, type or mixture of them: natural gas, biomethane, manufactured gas and mixtures of propane gas and air, propane, propylene, butanes (normal butane or isobutane) and butylenes.
Where the term natural gas is used, the requirements of this Code apply equally to and include the following gases, type or mixtures of them: natural gas, biomethane and mixtures of propane gas and air.
Where the term propane is used, the requirements of this Code apply equally to and include the following gases, type or mixture of them: propane, propylene, butanes (normal butane or isobutane) and butylenes.”;
(4)  by replacing the first paragraph of Clause 2 by the following:
“The documents incorporated by reference into this Code are those indicated below and include any subsequent amendments and editions that may be published.
Despite the first paragraph, where a document indicated below is adopted by reference by a chapter of the Construction Code (chapter B-1.1, r. 2) or the Safety Code (chapter B-1.1, r. 3), or by another regulation of the Board, the document incorporated by reference into this Code is then the document as adopted by that chapter or regulation.”;
(5)  in Clause 3
(a)  by replacing “The following definitions shall apply in this Code:” after the note by “Unless the context indicates otherwise, the following definitions shall apply in this Code:”;
(b)  by replacing the definition “Approved” by the following:
Approved: approved or authorized by the Régie du bâtiment du Québec under sections 2.06 and 2.07 of the Construction Code or section 127 or 128 of the Building Act (chapter B-1.1).”;
(c)  by replacing the definition “Authority having jurisdiction” by the following:
«Authority having jurisdiction: Régie du bâtiment du Québec.»;
(d)  by striking out the definition “Certified”;
(e)  by inserting the following after “Gas hose”:
Gas undertaking (natural gas): undertaking for the distribution of natural gas.”;
(f)  by inserting the following after the definition “Dirt pocket (dust pocket)”:
Distributor: undertaking for the distribution of liquefied petroleum gas.”;
(g)  by replacing the definition “Installer” by the following:
Installer: contractor or owner-builder holding the appropriate licence issued under the Building Act.”;
(6)  by revoking Clause 4.2;
(7)  by replacing Clause 6.7.2(b) by the following:
“(b) in a chimney, flue, laundry chute, garbage chute or, in the case of an elevator, dumbwaiter or small dumbwaiter, in a sleeve, machine location, machine room, control site or control room;”;
(8)  by replacing Clause 6.9.3 by the following:
“6.9.3. Welding of gas piping shall be performed in compliance with a welding method established and complying with Clauses 7.6, 7.7 and 7.11 of CAN/CSA Standard Z662 by a welder holding the appropriate qualification certificate issued under the Act respecting workforce vocational training and qualification (chapter F-5).”;
(9)  by inserting the following after Clause 7.1.3:
“7.1.4. Boilers converted to gas shall be in compliance with Clauses 9.4.1 and 9.4.2 of CSA Standard B149.3.”;
(10)  by replacing Clause 8.2.1 by the following:
“8.2.1. Subject to the exceptions referred to in the second paragraph and in Clause 8.2.3, an outdoor air supply sized in accordance with Clause 8.2.2 shall be provided to either an enclosure or a structure in which appliances are installed.
Except for boilers, water heaters and pool heaters that include a finned-tube heat exchanger, an outdoor air supply shall not be required in structures built before 1986 where the doors and windows of that structure have not been replaced after 1985 and the volume of the enclosure or the structure in which the appliances are installed is greater than 50 ft3 per 1,000 Btu/h (4.84 m3 per kW) of the total heat input of all the appliances in the enclosure or the structure.”;
(11)  by striking out “and the Structure Complies with Clause 8.2.1 (a) or (b)” and “and Tables 8.3 and 8.4” in the heading of Table 8.1;
(12)  by striking out “and the Structure Complies with Clause 8.2.1 (a) or (b)” in the heading of Table 8.2;
(13)  by replacing Clause 8.2.3 by the following:
“8.2.3. An outdoor air supply shall not be required for a mechanically vented water heater with a heat input of 50,000 Btu/h (14.64 kW) or less where there are no other appliances that require an air supply installed in the enclosure or the structure, it is not used to heat the structure, and the volume of the enclosure or the structure is greater than 50 ft3 per 1,000 Btu/h (4.84 m3 per kW) of its heat input.”;
(14)  by revoking Clauses 8.2.4 and 8.2.5 and Tables 8.3 and 8.4;
(15)  by striking out in Clause 8.2.6 “, provided that the structure is not constructed as described in Clause 8.2.1(a) and does not comply with Clause 8.2.1(b). Otherwise, the volume of the enclosure shall be used.”;
(16)  by striking out the reference to Clause 8.2.4 in Clauses 8.3.1, 8.3.3 and 8.3.4;
(17)  by inserting the following after Clause 8.13.3:
“8.13.4. The tables in Annex C shall be used in accordance with the General Venting Requirements (GVR) specified in that Annex.”;
(18)  by adding the following paragraph at the end of Clause 8.14.8:
“Notwithstanding paragraph (g), a vent shall not terminate less than 6 feet (1.8 m) under an awning window.”;
(19)  by inserting the following after Clause 8.18.23:
“8.18.24. The total length of a vent connector shall comply with that provided for in Table C.9 of Annex C or be sized in accordance with a calculation prepared by an engineer.”;
(20)  by replacing “in accordance with Clause 8.2.1” in Clause C.2.2 General Venting Requirements (GVR) of Annex C by “after 1985 or where the doors and windows were replaced after 1985”.
O.C. 875-2003, s. 1; O.C. 120-2006, ss. 1 and 5; O.C. 991-2018, s. 1.
2.13. CSA Standard B149.2 is amended
(1)  by replacing Clauses 1.1 and 1.2 by the following:
“1.1. This Code applies to
(a)  installations intended to store, handle or transfer liquefied petroleum gas; and
(b)  installations intended to use liquefied petroleum gas.”;
(2)  in Clause 2
(a)  by replacing the first paragraph by the following:
“The documents incorporated by reference into this Code are those indicated below and include any subsequent amendments and editions that may be published.
Despite the first paragraph, where a document indicated below is adopted by reference by a chapter of the Construction Code (chapter B-1.1, r. 2) or the Safety Code (chapter B-1.1, r. 3), or by another regulation of the Board, the document incorporated by reference into this Code is then the document as adopted by that chapter or regulation.”;
(b)  by inserting the following after the reference “NFPA 30B-2011 Code for the Manufacture and Storage of Aerosol Products”:
“NFPA 68, Standard on Explosion Protection by Deflagration Venting, 2013 Edition.”;
(3)  in Clause 3
(a)  by replacing “The following definitions shall apply in this Code:” after the note by “Unless the context indicates otherwise, the following definitions shall apply in this Code:”;
(b)  by replacing the definition “Approved” by the following:
Approved: approved or authorized by the Régie du bâtiment du Québec under sections 2.06 and 2.07 of the Construction Code or section 127 or 128 of the Building Act (chapter B-1.1).”;
(c)  by replacing the definition “Authority having jurisdiction” by the following:
«Authority having jurisdiction: Régie du bâtiment du Québec.»;
(d)  by striking out the definition “Certified”;
(e)  by inserting the following after the definition “Kiosk”:
Liquefied petroleum gas: propane, propylene, butanes (normal butane or isobutane), butylene or a mixture of those gases.”;
(f)  by replacing the definition “Installer” by the following:
Installer: contractor or owner-builder holding an appropriate licence issued under the Building Act.”;
(4)  by revoking Clause 4.2;
(5)  by revoking Clause 5.2.11;
(6)  by replacing Clause 6.5.10.2(c) by the following:
“(c) an explosion relief panel in compliance with standard NFPA 68; or”;
(7)  by replacing Clause 7.17.3(e)(iii) by the following:
“(iii) an explosion relief panel in compliance with standard NFPA 68; or”.
O.C. 875-2003, s. 1; O.C. 120-2006, ss. 1 and 6; O.C. 991-2018, s. 1.
2.14. CSA Standard B149.3 is amended
(1)  by replacing “D (informative)” in “Annexes” in the Table of Contents by “D (mandatory)”;
(2)  by revoking Clause 1.2;
(3)  by replacing the first paragraph of Clause 2 by the following:
“The documents incorporated by reference into this Code are those indicated below and include any subsequent amendments and editions that may be published.
Despite the first paragraph, where a document indicated below is adopted by reference by a chapter of the Construction Code (chapter B-1.1, r. 2) or the Safety Code (chapter B-1.1, r. 3), or by another regulation of the Board, the document incorporated by reference into this Code is then the document as adopted by that chapter or regulation.”;
(4)  in Clause 3
(a)  by replacing “The following definitions shall apply in this Code:” after the note by “Unless the context indicates otherwise, the following definitions shall apply in this Code:”;
(b)  by replacing the definition “Approved” by the following:
Approved: approved or authorized by the Régie du bâtiment du Québec under sections 2.06 and 2.07 of the Construction Code or section 127 or 128 of the Building Act (chapter B-1.1).”;
(c)  by replacing the definition of “Authority having jurisdiction” by the following:
Authority having jurisdiction: Régie du bâtiment du Québec.”;
(5)  by replacing Clause 5.4.3 by the following:
“5.4.3. When an electronic-type fuel-air ratio control (FARC) system is used, it shall be in compliance with standard ISO 23552-1 or the provisions of Annex D.”;
(6)  by replacing “(informative)” in the title of Annex D by “(mandatory)”;
(7)  by replacing the note in Annex D by the following:
Note: This Annex is a mandatory part of this Code.”;
(8)  by replacing the first two paragraphs of Clause D.2 in Annex D by the following:
“These Guidelines provide a listing of the features that shall be incorporated with electronic-type fuel-air ratio control (FARC) systems.
The provisions shall be satisfied.”.
O.C. 875-2003, s. 1; O.C. 1172-2005, s. 3; O.C. 120-2006, s. 7; O.C. 991-2018, s. 1.
2.15. CSA Standard Z276 is amended
(1)  by replacing “D (informative)” in “Annexes” in the Table of Contents by “D (mandatory)”;
(2)  by replacing Clause 1.1 by the following:
“1.1. This Standard applies to fixed and mobile facilities intended for the liquefaction, storage, vaporization, transfer or handling of liquefied natural gas regardless of their locations and for the distribution of the liquefied natural gas.”;
(3)  by replacing Clause 1.2.2 by the following:
“1.2.2. This Standard includes non-mandatory guidelines for small LNG facilities (see the definition of “small facility” in Chapter 3 and Annex B) and mandatory guidelines for LNG vehicle fuelling stations employed for fleet or public LNG vehicle fuel dispensing operations (see the definition of “fuelling station” in Clause D.2 and Annex D). If Annex D cannot be complied with, the facility shall be approved by the Régie du bâtiment du Québec according to the conditions it sets under sections 127 and 128 of the Building Act (chapter B-1.1).”;
(4)  by revoking Clause 1.2.3;
(5)  by revoking Clause 1.3;
(6)  by replacing the first paragraph of Clause 2 by the following:
“The documents incorporated by reference into this Standard are those indicated below and include any subsequent amendments and editions that may be published.
Despite the first paragraph, where a document indicated below is adopted by reference by a chapter of the Construction Code (chapter B-1.1, r. 2) or the Safety Code (chapter B-1.1, r. 3), or by another regulation of the Board, the document incorporated by reference into this Standard is then the document as adopted by that chapter or regulation.”;
(7)  in Clause 3
(a)  by replacing the first sentence of the Clause by the following:
“Unless the context indicates otherwise, the following definitions shall apply in this Code:”;
(b)  by inserting the following definition before “Authority having jurisdiction”:
Approved: approved or authorized by the Régie du bâtiment du Québec under sections 2.06 and 2.07 of the Construction Code or section 127 or 128 of the Building Act.”;
(c)  by replacing the definition “Authority having jurisdiction” by the following:
«Authority having jurisdiction: Régie du bâtiment du Québec.»;
(8)  by replacing “informative” in the title of Annex D by “mandatory”;
(9)  by replacing the notes in Annex D by the following:
Note: This Annex constitutes a mandatory part of this Standard.”.
O.C. 875-2003, s. 1; O.C. 120-2006, ss. 1 and 8; O.C. 991-2018, s. 1.
2.16. CAN/CSA Standard Z662 is amended
(1)  by replacing Clause 1.1 by the following:
“1.1. This Standard covers intraprovincial gas pipeline systems to the extremity of the operator’s installations, that is, the point where the operator’s piping ends.”;
(2)  by replacing the first paragraph of Clause 2.1 by the following:
“The documents incorporated by reference into this Standard are indicated below and include any subsequent amendments and editions that may be published.
Despite the first paragraph, where a document indicated below is adopted by reference by a chapter of the Construction Code (chapter B-1.1, r. 2) or the Safety Code (chapter B-1.1, r. 3), or by another regulation of the Board, the document incorporated by reference into this Standard is then the document as adopted by that chapter or regulation.”;
(3)  in Clause 2.2
(a)  by replacing the first sentence of the Clause by the following:
“Unless the context indicates otherwise, the following definitions shall apply in this Code:”;
(b)  by striking out the definition “Construction”;
(c)  by replacing the definition of “Contractor” by the following:
Contractor: a contractor or an owner-builder within the meaning of section 7 of the Building Act (chapter B-1.1), who carries out or has carried out construction work covered by this Standard.”;
(d)  by adding the following after the definition “Ductile cast iron”:
Easily accessible: within reach for the operation, replacement, maintenance or inspection without having to climb, remove an obstacle or use a mobile ladder.”;
(4)  by inserting the following after Clause 10.6.4.4:
“10.6.5. Right of way encroachment where high pressure gas pipeline is installed (operated at more than 30% of their SMYS)
10.6.5.1. Except for agricultural work carried out at a maximum depth of 30 cm, no soil disturbance may be carried out in a right of way unless prior written authorization has been obtained from the operator.
For the purposes of this Clause, soil disturbance means all work, operations or activities, above ground or underground, causing a movement or a shift of soil or ground cover, including in particular the following activities: excavation, trench, vertical drilling, dethatching, soil levelling, tree planting, soil aeration, mechanical stone collection, rutting and installation of fence posts, bars, rods, stakes or anchors.
10.6.5.2. No building (including a shed) or other object permanently fixed may be erected in a right of way.
10.6.5.3. No flammable material, solid or liquid residue, refuse, waste or effluent may be deposited or stored in a right of way.
10.6.5.4. Except for vehicles travelling on a public road crossing the right of way, only vehicles belonging to an operator or authorized by an operator may travel on that right of way for inspection, maintenance or leak detection purposes.”;
(5)  by inserting the following after Clause 12.2:
“12.2.1. The service line of a building shall come out of the ground before entering the building and it shall be equipped with a service shut-off valve outside the building.
However, if the location where the service line comes out of the ground presents a danger and the service line cannot be protected, it shall enter the building below ground level and be equipped with an underground service shut-off valve located outside the building and with another service shut-off valve inside, as near as possible to the foundation wall.
Where buildings are connected by a common area, service lines may serve their respective building through the common area provided they are equipped with a service shut-off valve identified and connected to a common service line equipped with a main service shut-off valve above ground.
However, an identification indicating the presence of natural gas and the location of the service shut-off valves shall be present outside near the main entrance to each of the buildings served.
12.2.2. The service shut-off valves above ground shall be easily accessible for their operation.
12.2.3. Before supplying gas to an installation, an operator shall affix to the building, above or within a radius of not more than one metre from any service entrance, a distinctive mark visible at all times.”.
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
DIVISION VIII
INSPECTION FEES
O.C. 875-2003, s. 1; O.C. 991-2018, s. 1.
2.17. A contractor or an owner-builder in gas must pay to the Board, for the inspection of construction work for a gas installation carried out further to the issue of a remedial notice provided for in section 122 of the Building Act (chapter B-1.1), inspection fees of $168.31 for the first hour or fraction thereof, half of the hourly rate for each half-hour or fraction thereof in addition to the first hour and fees of $79.19 for each trip.
O.C. 991-2018, s. 1.
DIVISION IX
OFFENCE
O.C. 991-2018, s. 1.
2.18. Any contravention of one of the provisions of this Chapter, except the provisions of Division VIII, constitutes an offence.
O.C. 991-2018, s. 1.
CHAPTER III
PLUMBING
O.C. 961-2002, s. 5; O.C. 294-2008, s. 1; O.C. 65-2021, s. 1.
DIVISION I
SCOPE
O.C. 961-2002, s. 5; O.C. 294-2008, s. 1; O.C. 65-2021, s. 1.
3.01. In this Chapter, unless the context indicates otherwise, Code means the “National Plumbing Code of Canada 2015” (NRCC 56193), published by the Canadian Commission on Building and Fire Codes, National Research Council of Canada, as well as all subsequent amendments that may be published by that organization.
That Code is incorporated by reference into this Chapter subject to the amendments provided for in sections 3.04 to 3.06.
Despite the foregoing, amendments to that edition published after 27 March 2021 apply to construction work on a plumbing system only from the last day of the sixth month following the publication of the French and English versions of those amendments. If those versions are not published at the same time, the 6-month period runs from the date of publication of the last version.
The third paragraph does not apply to errata, which take effect as soon as they are published by the Canadian Commission on Building and Fire Codes.
O.C. 961-2002, s. 5; O.C. 120-2006, s. 9; O.C. 294-2008, s. 1; O.C. 939-2009, s. 4; O.C. 30-2014, s. 1; O.C. 65-2021, s. 1.
3.02. Subject to the amendments made by this Chapter, the Code applies to all construction work on a plumbing system in
(1)  a building to which the Building Act (chapter B-1.1) applies; or
(2)  a facility intended for use by the public that is a tent or exterior inflatable structure to which Chapter I of the Construction Code (chapter B-1.1, r. 2) applies and is used
(a)  as residential occupancies or care, treatment or detention occupancies whose floor area is 100 m2 or more, or
(b)  as assembly occupancies or mercantile occupancies whose floor area is more than 150 m2 or whose load capacity is more than 60 persons.
For the purposes of this section, the definitions of plumbing system and building are those provided for in the Code, as adopted by this Chapter. In addition, the definitions of the following terms are those provided for in the National Building Code, as adopted by Chapter I of the Construction Code: tent, inflatable structure, residential occupancy, care occupancy, treatment occupancy, detention occupancy, floor area, assembly occupancy, mercantile occupancy.
O.C. 961-2002, s. 5; O.C. 294-2008, s. 1; O.C. 30-2014, s. 2; O.C. 65-2021, s. 1.
3.03. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 961-2002, s. 5; O.C. 873-2005, s. 1; O.C. 294-2008, s. 1; O.C. 1263-2012, s. 2; O.C. 65-2021, s. 1; O.C. 1419-2021, s. 2.
DIVISION II
AMENDMENTS TO THE CODE
O.C. 961-2002, s. 5; O.C. 294-2008, s. 1; O.C. 65-2021, s. 1.
3.04. The Code is amended in Division A
(1)  by replacing Article 1.1.1.1. by the following:
1.1.1.1. Application of this Code
(1) The NPC applies to the construction work performed on a plumbing system in every building and facility intended for use by the public as provided in section 3.02 of Chapter III of the Construction Code made pursuant to the Building Act (chapter B-1.1).
(2) In accordance with the NBC, every building shall, except as provided in Sentence (3), have plumbing facilities.
(3) If a hot water system is required under the NBC, the facility shall provide an adequate hot water supply.”;
(2)  by replacing Clause (b) of Sentence (1) in Article 1.2.1.1. by the following:
“ (b) using alternative solutions that will achieve at least the minimum level of performance required by Division B in the areas defined by the objectives and functional statements attributed to the applicable acceptable solutions approved by the Régie du bâtiment in accordance with section 127 of the Building Act (chapter B-1.1) (see Note A-1.2.1.1.(1)(b).).”;
(3)  in Sentence (1) of Article 1.4.1.2.,
(a)  by inserting the following after the definition of “Combustible”:
Construction Code” means the Construction Code (chapter B-1.1, r. 2) made pursuant to the Building Act (chapter B-1.1). ”;
(b)  by inserting “, retention pit” after “sump” in the definition of “Storm building drain”;
(c)  by replacing the definition of “Potable” by the following:
Potable means water intended for human consumption.”;
(d)  by replacing the definition of “Public use” by the following:
Public use (as applying to the classification of plumbing fixtures) means fixtures installed in locations other than those designated as private use.”;
(4)  by inserting “PE-RT.....high temperature polyethylene” after “PEX.....crosslinked polyethylene” in Sentence (1) of Article 1.4.2.1.;
(5)  by replacing Figure A-1.4.1.2.(1)-L in note A-1.4.1.2.(1) by the following:
“ 
”;
(6)  in Sentence (1) of Article 3.2.1.1.,
(a)  by inserting the following after the functional statement “F21 To limit or accommodate dimensional change.”:
F23 To maintain equipment in place during structural movement.”;
(b)  by inserting the following after the functional statement “F46 To minimize the risk of contamination of potable water.”:
F60 To control the accumulation and pressure of surface water, groundwater and sewage.
F61 To resist the ingress of precipitation, water or moisture from the exterior or from the ground.”.
O.C. 961-2002, s. 5; O.C. 294-2008, s. 1; O.C. 939-2009, s. 5; O.C. 30-2014, s. 3; O.C. 65-2021, s. 1.
3.05. The Code is amended in Division B,
(1)  by replacing Table 1.3.1.2. in Sentence 1 of Article 1.3.1.2. by the following:
”;
(2)  in Sentence (1) of Article 1.3.2.1.,
(a)  by inserting the following after “AWWA…American Water Works Association (www.awwa.org)”:
“BNQ...Bureau de normalisation du Québec (www.bnq.qc.ca)”;
(b)  by inserting the following after “CSA…CSA Group (www.csagroup.org)”:
“ISO...International Organization for Standardization (www.iso.org);
MSS...Manufacturers Standardization Society of the Valve and Fittings Industry (www.mss-hq.com)”;
(c)  by inserting the following after “NPC…National Plumbing Code of Canada 2015”:
“NSF...NSF International (www.nsf.com)”;
(3)  by adding the following after Subsection 2.1.3.:
2.1.4. Structural Movement
2.1.4.1. Structural Movement
(1)Plumbing systems of buildings subject to Chapter I of the Construction Code and to which Part 4 of Division B of the NBC applies shall be designed and installed to accommodate the maximum relative structural movement provided for in the construction of the building. (See Article 4.1.3.5., Subsection 4.1.8., Sentence 4.1.3.3.(2) and Article A-6.2.1.4. of Division B of the NBC for information on the types of structural movements that may be encountered.)”;
(4)  in Sentence (1) of Article 2.2.2.2.,
(a)  by striking out “and” in Clause (g);
(b)  in the French text by replacing “toilettes à broyeur” in Clause (h) by “systèmes de toilettes à broyeur”;
(c)  by adding the following after Clause (h):
“(i) toilet seats with bidet functionality shall conform to ASME A112.4/CSA B45.16, “Personal Hygiene Devices for Water Closets”,
(j) glass lavatories shall conform to CSA B45.11/IAPMO Z401, “Glass Plumbing Fixtures”,
(k) terrazzo, concrete or natural stone plumbing fixtures shall conform to CSA B45.8/IAPMO Z403, “Terrazzo, Concrete and Natural Stone Plumbing Fixtures”, and
(l) aluminum or copper plumbing fixtures shall conform to CSA B45.12/IAPMO Z402, “Aluminum and Copper Plumbing Fixtures”.”;
(5)  in Article 2.2.3.2., by replacing Sentence (3) by the following:
(3) Grease interceptors shall conform to CSA-B481 Series, “Grease Interceptors”. (See Note A-2.2.3.2.(3).)
(4) Grease interceptors shall be selected and installed in conformance with CSA B481.3, “Sizing, Selection, Location, and Installation of Grease Interceptors”.
(5) Amalgam separators shall conform to ISO 11143, “Amalgam Separators”.
(6) Oil interceptors shall conform to CAN/ULC-S656, “Standard for Oil-Water Separators”.”;
(6)  in Article 2.2.4.2., by replacing Sentence (1) by the following:
(1) Except as provided in Article 2.4.3.7., a single or double sanitary T fitting shall not be used in a nominally horizontal pipe, except that a single sanitary T fitting may be used to connect a vent pipe.”;
(7)  by adding “The prohibition also applies to any combination of 45° elbows displaying the same characteristics.” at the end of Sentence (1) of Article 2.2.4.3;
(8)  in Article 2.2.5.1.,
(a)  by striking out “or” at the end of Clause (a) of Sentence (1);
(b)  by replacing “and Fittings”.” in Clause (b) of Sentence (1) by “and Fittings”, or”;
(c)  by adding the following after Clause (b) of Sentence (1):
“(c) BNQ 2622-126, “Reinforced Concrete and Unreinforced Concrete Pipes and Monolithic Lateral Connections for Evacuation of Domestic Wastewater and Storm Water”.”;
(9)  in Article 2.2.5.3., by replacing Sentence (1) by the following:
(1) Polyethylene water pipe, tubing, and fittings shall conform to Series 160 of
(a) CSA-B137.1, “Polyethylene (PE) Pipe, Tubing, and Fittings for Cold-Water Pressure Services”, or
(b) BNQ 3624-027, “Polyethylene (PE) Pipe for the Transport of Fluids Under Pressure”.”;
(10)  in Article 2.2.5.5., by replacing Sentence (1) by the following:
(1) Crosslinked polyethylene pipes and fittings approved by the manufacturer and used in hot and cold potable water systems shall conform to CSA-B137.5, “Cross-Linked Polyethylene (PEX) Tubing Systems for Pressure Applications” (see Note A-2.2.5.5.(1).”;
(11)  in Article 2.2.5.6., by replacing Clause (a) of Sentence (1) by the following:
“(a) conform to
(i) CSA-B137.3, “Rigid Polyvinylchloride (PVC) Pipe and Fittings for Pressure Applications”, or
(ii) BNQ 3624-250, “Unplasticized Poly(Vinyl Chloride) [PVC-U] Pipe and Fittings - Rigid Pipe for Pressurized Water Supply and Distribution”.”;
(12)  in Article 2.2.5.8.,
(a)  by striking out “or” at the end of Clause (g) of Sentence (1);
(b)  by replacing “non-perforated pipes.” in Clause (h) of Sentence (1) by “non-perforated pipes,”;
(c)  by adding the following after Clause (h) of Sentence (1):
“(i) BNQ 3624-120, “Smooth Inside Wall Open-Profile Polyethylene (PE) Pipe and Polyethylene (PE) Fittings for Storm Sewers, Culverts and Soil Drainage”,
(j) BNQ 3624-130, “Unplasticized Poly(Vinyl Chloride) [PVC-U] Pipe and Fittings - Pipes of 150 mm in Diameter or Smaller”, or
(k) BNQ 3624-135, “Unplasticized Poly(Vinyl Chloride) [PVC-U] Pipe and Fittings - Pipes of 200 mm in Diameter or Larger for Sewage and Soil Drainage”.”;
(13)  by adding the following after Article 2.2.5.13.:
2.2.5.14. Pipes and Fittings Made of Polyethylene of Raised Temperature Resistance
(1) Pipes made of polyethylene of raised temperature resistance (PE-RT) and fittings approved by the manufacturer and used in hot and cold potable water systems shall conform to CSA-B137.18, “Polyethylene of Raised Temperature Resistance (PE-RT) Tubing Systems for Pressure Applications” (see Note A-2.2.5.14.(1).).”;
(14)  in Article 2.2.6.1., by adding the following after Sentence (2):
(3) Wall supports for water closets shall conform to
(a) ASME A112.6.1M, “Supports for Off-the-Floor Plumbing Fixtures for Public Use”, or
(b) ASME A112.6.2, “Framing-Affixed Supports for Off-the-Floor Water Closets with Concealed Tanks”.”;
(15)  in Article 2.2.6.4., by replacing Sentence (1) by the following:
(1) Cast-iron water pipes shall conform to
(a) ANSI/AWWA-C151/A21.51, “Ductile-Iron Pipe, Centrifugally Cast, for Water”, or
(b) NQ 3623-085, “Ductile-Iron Pipes for Water Pressure Piping Systems - Characteristics and Test Methods”.”;
(16)  by adding the following after Article 2.2.7.8.:
2.2.7.9. Quick Connection Push-Fit Fittings
(1) Quick connection push-fit fittings shall conform to ASSE 1061, “Performance Requirements for Push-Fit Fittings”.”;
(17)  in Article 2.2.10.5., by inserting “, except at the point of connection to a standpipe system” after “water systems” in Sentence (1);
(18)  in Article 2.2.10.6., by replacing Sentence (1) by the following:
(1) Plumbing supply fittings shall conform to
(a) ASME A112.18.1/CSA B125.1, “Plumbing Supply Fittings”,
(b) CSA B125.3, “Plumbing Fittings”,
(c) CSA B125.5/IAPMO Z600, “Flexible Water Connectors with Excess Flow Shut-Off Devices”,
(d) ASME A112.18.6/CSA B125.6, “Flexible Water Connectors”,
(e) ASME A112.4.14/CSA B125.14, “Manually Operated Valves for Use in Plumbing Systems”,
(f) ASSE 1037/ASME A112.1037/CSA B125.37, “Performance Requirements for Pressurized Flushing Devices for Plumbing Fixtures”, or
(g) ASSE 1070/ASME A112.1070/CSA B125.70, “Performance Requirements for Water Temperature Limiting Devices”.”;
(19)  by replacing Article 2.2.10.7. by the following:
2.2.10.7. Water Temperature Control (See Note A-2.2.10.7.)
(1) Except as provided in Sentences (2) to (4), valves supplying shower heads or bathtubs shall be of the pressure-balanced, thermostatic, or combination pressure-balanced/thermostatic type and conform to ASME A112.18.1/CAN/CSA B125.1, “Plumbing Supply Fittings”.
(2) Valves supplying only bathtubs need not be of one of the types referred to in Sentence (1) if the hot water supply is controlled by a thermostatic-mixing valve conforming to CAN/CSA-B125.3, “Plumbing Fittings”, or an automatic temperature-limiting device conforming to ASSE 1070/ASME A112.1070/CSA B125.70, “Performance Requirements for Water Temperature Limiting Devices”.
(3) Valves supplying only shower heads need not be of one of the types referred to in Sentence (1) if the water supply is controlled by an automatic compensating valve conforming to CAN/CSA B125.3, “Plumbing Fittings”.
(4) Except as provided in Sentence (5), valves supplying shower heads or bathtubs of a care occupancy or private seniors’ residence within the meaning of the Act respecting health services and social services (chapter S-4.2) shall be of the thermostatic or combination pressure-balanced/thermostatic type and conform to ASME A112.18.1/CAN/CSA B125.1, “Plumbing Supply Fittings”. For the purposes of this Article, care occupancy means a building or part of a building housing persons who, because of their physical or mental state, need medical care or treatment.
(5) Valves supplying only bathtubs of a care occupancy or private seniors’ residence need not be of one of the types referred to in Sentence (4) if the hot water supply is controlled by a thermostatic-mixing valve conforming to CAN/CSA B125.3, “Plumbing Fittings”, or an automatic temperature-limiting device conforming to ASSE 1070/ASME A112.1070/CSA B125.70, “Performance Requirements for Water Temperature Limiting Devices”, installed within the limits of a bathroom.
(6) Valves, mixing valves and limiting devices covered by Sentences (1) to (3) shall be adjusted to provide a water outlet temperature that does not exceed 49 °C. Those covered by Sentences (4) and (5) shall be adjusted to provide a water outlet temperature that does not exceed 43 °C.”;
(20)  in Article 2.2.10.10.,
(a)  by replacing clauses (e) to (m) of Sentence (1) by the following:
“(e) CSA B64.1.4, “Vacuum Breaker, Air Space Type (ASVB)”,
(f) CSA B64.2, “Hose Connection Vacuum Breakers (HCVB)”,
(g) CSA B64.2.1, “Hose Connection Vacuum Breakers (HCVB) with Manual Draining Feature”,
(h) CSA B64.2.2, “Hose Connection Vacuum Breakers (HCVB) with Automatic Draining Feature”,
(i) CSA B64.3, “Dual Check Valve Backflow Preventers with Atmospheric Port (DCAP)”,
(j) CSA B64.4, “Reduced Pressure Principle (RP) Backflow Preventers”,
(k) CSA B64.5, “Double Check Valve (DCVA) Backflow Preventers”,
(l) CSA B64.6, “Dual Check Valve (DuC) Backflow Preventers”,
(m) CSA B64.7, “Laboratory Faucet Vacuum Breakers (LFVB)”, or
(n) CSA B64.8, “Dual Check Valve Backflow Preventers with Intermediate Vent (DuCV)”.”;
(b)  by replacing “CSA B125.3, “Plumbing Fittings”.” in Sentence (2) by “ASSE 1002/ASME A112.1002/CSA B125.12, “Anti-Siphon Fill Valves for Water Closet Tanks”.”;
(21)  by replacing “brise-vide” in the French text of Sentence (1) of Article 2.2.10.11 by “antivide”;
(22)  in Article 2.2.10.13.,
(a)  by striking out “Solar Domestic” in the title;
(b)  by replacing Sentence (1) by the following:
(1) Service water heaters shall conform to
(a) ANSI Z21.10.1/CSA 4.1, “Gas Water Heaters - Volume I, Storage Water Heaters with Input Ratings of 75,000 Btu per Hour or Less”,
(b) ANSI Z21.10.3/CSA 4.3, “Gas Water Heaters - Volume III, Storage Water Heaters with Input Ratings above 75,000 Btu per Hour, Circulating and Instantaneous”,
(c) CAN/CSA-C22.2 No. 110, “Construction and Test of Electric Storage-Tank Water Heaters”,
(d) CSA B140.12, “Oil-Burning Equipment: Service Water Heaters for Domestic Hot Water, Space Heating, and Swimming Pools”,
(e) CAN/CSA-F379 SERIES, “Solar Domestic Hot Water Systems (Liquid-to-Liquid Heat Transfer)”,
(f) CSA C22.2 No. 64, “Household Cooking and Liquid-Heating Appliances”, or
(g) CAN/CSA-E60335-2-35, “Safety of Household and Similar Electrical Appliances - Part 2-35: Particular Requirements for Instantaneous Water Heaters”.”;
(23)  in Article 2.2.10.17.,
(a)  by adding “Potable” at the beginning of the title;
(b)  by replacing Sentence (1) by the following:
(1)Potable water disinfection units using ultraviolet designed to meet the requirements of the Regulation respecting the quality of drinking water (chapter Q-2, r. 40) shall conform to
(a) NSF/ANSI 55, “Ultraviolet Microbiological Water Treatment Systems”, or
(b) CAN/CSA-B483.1, “Drinking Water Treatment Systems”, if they are designed to be installed at the point of use.
(2) Reverse osmosis potable water treatment systems installed at the point of use and designed to meet the requirements of the Regulation respecting the quality of drinking water shall conform to CAN/CSA-B483.1, “Drinking Water Treatment Systems”.
(3)Potable water distillation systems designed to meet the requirements of the Regulation respecting the quality of drinking water shall conform to
(a) NSF/ANSI 62, “Drinking Water Distillation Systems”, or
(b) CAN/CSA-B483.1, “Drinking Water Treatment Systems”, if they are designed to be installed at the point of use.
(4)Potable water treatment units not covered by Sentences (1) to (3) and designed to meet the requirements of the Regulation respecting the quality of drinking water shall conform to
(a) NSF/ANSI 53, “Drinking Water Treatment Units - Health Effects”, or
(b) CAN/CSA-B483.1, “Drinking Water Treatment Systems”, if they are designed to be installed at the point of use.
(5)Potable water treatment units not covered by Sentences (1) to (4) shall conform to CAN/CSA-B483.1, “Drinking Water Treatment Systems”.”;
(24)  by adding the following after Article 2.2.10.17.:
2.2.10.18. Backwater Valves
(1)Backwater valves shall conform to
(a) CSA-B70, “Cast Iron Soil Pipe, Fittings, and Means of Joining”,
(b) CAN/CSA-B181.1, “Acrylonitrile-Butadiene-Styrene (ABS) Drain, Waste, and Vent Pipe and Pipe Fittings”,
(c) CAN/CSA-B181.2, “Polyvinylchloride (PVC) and Chlorinated Polyvinylchloride (CPVC) Drain, Waste, and Vent Pipe and Pipe Fittings”,
(d) CAN/CSA-B182.1, “Plastic Drain and Sewer Pipe and Pipe Fittings”, or
(e) ANSI/CAN/UL/ULC 1201, “Sensor Operated Backwater Prevention Systems”.
2.2.10.19. Floor Drains and Shower Drains
(1) Floor drains, including emergency floor drains, and shower drains installed on the floor shall conform to CSA-B79, “Commercial and Residential Drains and Cleanouts”.
2.2.10.20. Roof Drains
(1) Roof drains shall conform to ASME A112.6.4, “Roof, Deck, and Balcony Drains”.
2.2.10.21. Trap Seal Primer Devices
(1) Trap seal primer devices shall conform to CAN/CSA-B125.3, “Plumbing Fittings”.
2.2.10.22. Pipe Hangers and Supports
(1) Manufactured pipe hangers and supports shall conform to MSS SP-58, “Pipe Hangers and Supports – Materials, Design, Manufacture, Selection, Application, and Installation”.
2.2.10.23. Floor Drain Trap Seals
(1) Floor drain trap seals used to maintain trap seal depth shall conform to ASSE 1072, “Performance Requirements for Barrier Type Floor Drain Trap Seal Protection Devices”.
2.2.10.24. Expansion Tanks
(1) Expansion tanks for potable water distribution systems shall conform to NSF/ANSI 61, “Drinking Water System Components – Health Effects”.
2.2.10.25. Heat Recovery Units
(1) Vertical drain water heat recovery units shall conform to CSA B55.2, “Drain Water Heat Recovery Units”.”;
(25)  by replacing “Running thread” in Sentence (1) of Article 2.3.3.4. by “Subject to Sentence 2.4.6.3.(6), running thread”;
(26)  in Article 2.3.4.5.,
(a)  by inserting, in Table 2.3.4.5., after
PEX plastic pipe0.08None
”,
the following:
PE-RT pipe0.08None
”;
(b)  by inserting “PE-RT,” after “PEX,” in Sentence (4);
(c)  in the French text by replacing “Les suspentes des tuyaux d’allure horizontale doivent être :” in Sentence (5) by “Lorsque des suspentes pour tuyaux d’allure horizontale sont utilisées, elles doivent être :”;
(27)  by replacing “a water pressure test or an air pressure test” in Sentence (1) of Article 2.3.6.1. by “a water pressure test, smoke pressure test or air pressure test”;
(28)  by inserting “, smoke test” after “air pressure test” in Sentence (1) of Articles 2.3.6.2. and 2.3.6.3.;
(29)  by adding the following after Article 2.3.6.7.:
2.3.6.8. Smoke Tests
(1) Where a smoke test is made
(a) smoke from smoke-generating machines shall be forced into the system, and
(b) a pressure equivalent to a 25 mm water column shall be maintained.”;
(30)  in Article 2.4.2.1.,
(a)  by replacing subclauses (v) and (vi) of Clause (e) of Sentence (1) by the following:
“(v) a water treatment device,
(vi) a drain or overflow from a water system or a heating system,
(vii) a drain from an ice machine, or
(viii) a drain from a heating, air-conditioning or ventilation system (see Note A-2.4.2.1.(1)(a)(ii) and (e)(vi)).”;
(b)  by replacing Sentence (2) by the following:
(2) Where the upper vertical part of an offset soil-or-waste stack receives water from fixtures from more than one storey, a connection in that offset soil-or-waste stack shall not be less than 1.5 m downstream from the base of the upper section of the soil-or-waste stack or from another connection receiving sewage from another soil-or-waste stack connected to the offset. (See Note A-2.4.2.1.(2).)”;
(c)  by replacing Sentences (4) and (5) by the following:
(4) Every connection at the bottom of a soil-or-waste stack shall be more than 1.5 m in a building drain or a branch receiving sewage from the soil-or-waste stack. (See Note A-2.4.2.1.(4)).
(5) Every trap arm of a bathtub, shower, bidet, floor drain or service sink installed on the floor shall have a nominally horizontal part not less than 450 mm in developed length. The developed length of the trap arm of a floor drain shall be increased to 1.5 m if it is connected not more than 3 m downstream from the bottom of a soil-or-waste stack or a leader. (See Note A-2.4.2.1.(5)).
(6) Where a change of direction greater than 45° occurs in a soil-or-waste pipe that serves more than one clothes washer or domestic kitchen sink, and in which pressure zones are created by detergent suds, no soil-or-waste pipe shall serve for connecting other soil-or-waste pipe over a length not less than
(a) 40 times the size of the soil-or-waste pipe or 2.44 m maximum vertical, whichever is less, before changing direction, and
(b) 10 times the size of the nominally horizontal soil-or-waste pipe after changing direction. (See Note A-2.4.2.1.(6) and (7)).
(7) Where a vent pipe is connected into the suds pressure zone referred to in Sentence (6), no other vent pipe shall be connected to that vent pipe within the height of the suds pressure zone. (See Note A-2.4.2.1.(6) and (7).)”;
(31)  in Article 2.4.2.3.,
(a)  by striking out “and” at the end of Clause (a) of Sentence (1);
(b)  by replacing “air break” in Clause (b) of Sentence (1) by “air break, and”;
(c)  by adding the following after Clause (b) of Sentence (1):
“(c) is located in the same room or suite.”;
(d)  by striking out “and” at the end of Clause (a) of Sentence (2);
(e)  by replacing “(see A-2.4.2.1.(1)(a)(ii) and (e)(vi)).” in Clause (b) of Sentence (2) by “(see A-2.4.2.1.(1)(a)(ii) and (e)(vi)), and”;
(f)  by adding the following after Clause (b) of Sentence (2):
“(c) is located in the same room or suite.”;
(g)  by striking out “and” at the end of Clause (a) of Sentence (3);
(h)  by replacing “are connected to it.” in Clause (b) of Sentence (3) by “are connected to it, and”;
(i)  by adding the following after Clause (b) of Sentence (3):
“(c) is located in the same room or suite.”;
(32)  by adding the following after Article 2.4.2.3.:
2.4.2.4. Toilet Wall Supports
(1) Toilet wall supports shall be fixed to the structural elements of the building to prevent stress from being transmitted to the plumbing system.”;
(33)  in Article 2.4.3.5.,
(a)  by replacing the title “Macerating Toilet Systems” by “Macerating Toilets and Macerating Systems”;
(b)  by replacing “macerating toilet system shall only be installed” in Sentence (1) by “macerating toilet or macerating system shall only be installed”;
(34)  in Article 2.4.3.6., by replacing “that connects the sump well to the drainage system” in Clause (b) of Sentence (1) by “that connects the pit to the sump well”;
(35)  by adding the following after Article 2.4.3.6.:
2.4.3.7. Retention Pit
(See Note A-2.4.3.7.)
(1) A retention pit shall be made in one piece, be leakproof and smooth inside. Its length shall not be less than 600 mm and its minimum width shall not be less than 450 mm, the length being taken in the direction of its fixture drain. A round retention pit shall be not less than 560 mm in size.
(2) The fixture drain of the retention pit shall be not less than 3 inches in size and be protected by a reversed sanitary T fitting with a cleanout at the end or by a running trap with cleanout. The fixture drain shall be 4 inches in size if the retention pit receives storm water. Despite the foregoing, for a single-family house, the fixture drain may be 3 inches in size.
(3) Except as provided in Sentence (6), a reversed sanitary T fitting shall be located inside the retention pit and the running trap may be located inside or outside the retention pit. In the last case, the trap cleanout shall be extended to the floor level. The retention pit shall have a running trap where it is connected to an oil interceptor.
(4) The lower end of the reversed sanitary T fitting shall be placed 150 mm or more from the bottom of the retention pit. In the case of a retention pit that receives water from a subsoil drainage pipe, the reversed sanitary T fitting shall be placed 75 mm or more from the bottom of the retention pit. For a running trap, the upper end of the trap shall be placed not less than 300 mm from the bottom of the retention pit.
(5) The retention pit shall be covered, at the floor or ground level, by a cover designed to withstand the intended loads.
(6) The fixture drain of a retention pit exposed to frost shall have a trap inside the building, unless it drains into another retention pit that is not exposed.
(7) The fixture drain of a retention pit shall be directly connected to the drainage system and drain into it by gravity or in the manner described in Article 2.4.6.3.
(8) The invert of a discharge pipe connected to a retention pit shall be higher than the invert of the fixture drain.
(9) Except as provided in Sentence (2), a retention pit shall have a fixture drain 3 inches in size for a draining area not more than 370 m2. For a fixture drain more than 3 inches in size, the drained area may be increased by 280 m2 per additional inch.
(10) The requirements of Article 2.5.1.1.(3)(c) do not apply to a retention pit used as a floor drain.
(11) Retention pits to which a subsoil drainage pipe is connected shall have
(a) an air-tight cover, and
(b) a vent pipe at least 1 1/2 inches in size if the content of the retention pit is pumped.”;
(36)  in Article 2.4.4.1., by adding the following after Sentence (1):
(2) Every beauty parlour lavatory shall be equipped with a hair interceptor.
(3) Every fixture that can receive dental amalgam waste shall have an amalgam interceptor.”;
(37)  by replacing Article 2.4.5.3. by the following:
2.4.5.3. Connection of Subsoil Drainage Pipe to a Drainage System
(1) Where a subsoil drainage pipe is connected to a drainage system, the connection shall be made on the upstream side of a trap with a cleanout, a trapped sump or a retention pit (see Note A-2.4.5.3.(1)).”;
(38)  by replacing Article 2.4.5.5. by the following:
2.4.5.5. Trap seals
(1) Provision shall be made for maintaining the trap seal of a floor drain by
(a) the use of a trap seal primer,
(b) using the drain as a receptacle for an indirectly connected drinking fountain,
(c) using a floor drain trap seal, or
(d) other equally effective means.
(See Note A-2.4.5.5.(1).)
(2) Water from the trap seal of a floor drain in a dwelling unit need not be maintained by a trap seal primer.
(See Note A-2.4.5.5.(2).)”;
(39)  in Article 2.4.6.3., by adding the following after Sentence (7):
(8) Every sump or receiving tank to which a subsoil drainage pipe is connected shall have
(a) an air tight cover, and
(b) a vent pipe at least 1 1/2 inches in size if the sump or tank is pumped.”;
(40)  in Article 2.4.6.4.,
(a)  by replacing Sentences (2) and (3) by the following:
(2) A backwater valve may be installed in a building drain provided that
(a) it is a “normally open” design, and
(b) it does not serve more than one dwelling unit.
(3) Except as provided in Sentences (4) to (6), where a fixture, a retention pit, a sump or running trap is located below the overfill level of the adjoining street or private sewage disposal system, a gate valve or a backwater valve shall be installed on every drain connected to a building drain or a branch.”;
(b)  by replacing Sentence (6) by the following:
(6) The installation of a gate valve or a backwater valve covered by Sentence (3) is not required if the building drain is protected from backflows in accordance with Sentence (2).”;
(41)  in Article 2.4.7.1., by adding the following after Sentence (11):
(12) In a separate system, a storm building drain shall be located to the left of the sanitary building drain, towards the street, from the building.”;
(42)  in Article 2.4.7.4., by replacing “fixtures” in Sentence (5) by “fixture drains”;
(43)  in Article 2.4.9.3., by inserting “be not less than 2 inches in size and” after “the trap inlet shall” in Sentence (3);
(44)  in Article 2.4.10.3., by replacing “a fixture” in Sentence (1) by “equipment”;
(45)  in Article 2.4.10.4., by replacing Sentence (4) by the following:
(4) Where the height of the parapet is more than 150 mm or exceeds the height of the adjacent wall flashing, emergency roof overflows or scuppers described in Clause (2)(c) shall be provided.”;
(46)  in Article 2.5.2.1.,
(a)  by replacing “Table” in Clause (a) of Sentence (1) by “Article”;
(b)  by replacing clauses (d) and (e) of Sentence (1) by the following:
“(d) the trap arms of the water closets connected to a vertical pipe are connected downstream from all other fixtures,
(e) trap arms and fixture drains do not exceed 2 inches in size when connected to a wet vent that extends above more than 1 storey, except for connections from emergency floor drains in accordance with Sentence 2.5.1.1.(3),”;
(c)  by replacing “Table” in Clause (f) of Sentence (1) by “Article”;
(d)  by replacing clauses (j) and (k) of Sentence (1) by the following:
“(j) the portion of the soil-or-waste stack having a wet vent that extends through more than one storey is the same size from its bottom to the uppermost connection of a fixture,
(k) the length of the wet vent is not limited,
(l) it is extended as a stack vent or as a continuous vent, and
(m) trap arms are connected separately and directly to the wet vent.”;
(47)  in Article 2.5.6.2., by adding the following after Sentence (3):
(4) The plumbing venting system may not be used in other systems.”;
(48)  in Article 2.5.6.5., by adding “except pipes 4 inches and bigger that may be of the same size,” at the end of Clause (a) of Sentence (6);
(49)  in Article 2.5.7.3., by replacing “2.5.8.1.” in Sentence (2) by “2.5.8.1.-A”;
(50)  in Article 2.5.8.1.,
(a)  by replacing “Table 2.5.8.1.” in Sentence (1) by “Tables 2.5.8.1.-A and 2.5.8.1.-B”;
(b)  by inserting the following before Table 2.5.8.1.:
Table 2.5.8.1.-A
Maximum Permitted Hydraulic Loads Drained to a Wet Vent Serving Fixtures on the Same Storey
Forming Part of Sentence 2.5.8.1.(1)
Size of Wet Vent for a Storey, inchesMaximum Hydraulic Load,
fixture units
1 ¼1
1 ½2
25
318
4120
”;
(c)  by replacing the title of Table 2.5.8.1. by “Table 2.5.8.1.-B”;
(51)  in Article 2.5.8.4., by adding the following after Sentence (4):
(5) At least one soil-or-waste stack or vertical soil-or-waste pipe shall extend into a stack vent or into a vent pipe that is terminated in open air. That soil-or-waste stack or vertical soil-or-waste pipe shall have a minimum size of 3 inches up to the outlet on the roof.”;
(52)  in Article 2.5.9.2.,
(a)  by replacing “shall only be used” in Sentence (1) by “may only be installed”;
(b)  by replacing “two-family dwellings undergoing renovation” in Clause (c) of Sentence (1) by “two-family dwellings during renovation work only”;
(c)  by replacing “installations where connection” in Clause (d) of Sentence (1) by “fixtures in an existing building where connection”;
(53)  in Article 2.6.1.1., by adding the following after Sentence (2):
(3) In a hot water distribution system with a recirculation loop, the temperature of the water being recirculated shall not be less than 55 °C at any point of the system.
(4) The recirculation loop covered by Sentence (3) may be replaced by a self-regulating heat tracing system.”;
(54)  in Article 2.6.1.6.,
(a)  by replacing Table 2.6.1.6. in Sentence (3) by the following:
Table 2.6.1.6.
Water Usage per Flush Cycle
Forming Part of Sentence 2.6.1.6.(3)
FixturesMaximum Water Usage per Flush Cycle, Lpf
Water closets ‒ dwellings
    single-flush4.8
    dual-flush6.0/4.1
Water closets ‒ industrial, commercial, institutional, residential other than dwellings4.8
Urinals1.9
”;
(b)  by replacing Sentence (4) by the following:
(4) In industrial, commercial and institutional buildings, and residential buildings other than dwellings, a maximum water usage of 6.0 Lpf shall be permitted for single-flush water closets where it can be demonstrated that a maximum water usage of 4.8 Lpf could lead to blockage given the configuration of the drainage system or municipal infrastructure.”;
(55)  in Article 2.6.1.7.,
(a)  in Sentence (1)
i.  by striking out “and” at the end of Clause (a);
ii.  by replacing “distribution system.” in Clause (b) by “distribution system, and”;
iii.  by adding the following after Clause (b):
“(c) that has a drain complying with the requirements of Sentence (5).”;
(b)  by replacing Sentence (10) by the following:
(10) Except as provided in Sentence (11), the drain pan shall
(a) be not less than 50 mm larger than the tank and have side walls not less than 75 mm high,
(b) be drained by a pipe two sizes larger than the relief valve discharge pipe, without being less than 1 1/4 inches, and
(c) have a drain that is located directly under the relief valve discharge pipe and that discharges directly to a floor drain or other acceptable location.
(11) The drain pan is not required to have a fixture drain where the relief valve discharge pipe conforms to Sentence (5).”;
(56)  in Article 2.6.1.9., by replacing Sentence (1) by the following:
(1)Water distribution systems shall be protected against water hammers by prefabricated water-hammer arresters (see Note A-2.6.1.9.(1)).”;
(57)  in Article 2.6.1.12., by replacing Sentence (1) by the following:
(1) The temperature control device of water heaters shall be set so that the temperature of stored water is not less than 60°C (see Note A-2.6.1.12.(1)).
(2) Drain water heat recovery units shall only be used to supply water heaters.”;
(58)  in Article 2.6.2.1., by adding the following after Sentence (3):
(4) In the case of backflow preventers that, according to CSA-B64.10, “Selection and Installation of Backflow Prevention Devices”, require testing after installation, the person testing the backflow preventers shall hold a certificate issued in accordance with CSA-B64.10.1, “Maintenance and Field Testing of Backflow Preventers”, by an organization or association certified by AWWA.”;
(59)  in Sentence (2) of Article 2.6.2.2.,
(a)  by striking out “or” at the end of Clause (j);
(b)  by replacing “with vent.” in Clause (k) by “with vent, or”;
(c)  by adding the following after Clause (k):
“(l) an air space type vacuum breaker.”;
(60)  in Article 2.6.2.4.,
(a)  by replacing Sentence (2) by the following:
(2) Except as provided in Sentence (4), potable water system connections to fire sprinkler and standpipe systems shall be protected against backflow caused by backsiphonage or back pressure in conformance with the following Clauses:
(a) residential partial flow-through fire sprinkler/standpipe systems in which the pipes and fittings are constructed of potable water system materials shall be protected by a dual check valve backflow preventer conforming to
(i) CSA-B64.6.1, “Dual Check Valve, Backflow Preventers for Fire Systems (DuCF)”, or
(ii) CSA-B64.6, “Dual Check Valve” (DuC) Backflow Preventers”,
(b) Class 1 fire sprinkler/standpipe systems shall be protected by a single check valve backflow preventer or by a dual check valve backflow preventer, provided that the systems do not use antifreeze or other additives of any kind and that the pipes and fittings are constructed of potable water system materials. The backflow preventer shall conform to
(i) CSA-B64.9, “Single Check Valve Backflow Preventers, for Fire Protection Systems (SCVAF)”, or
(ii) CSA-B64.6, “Dual Check Valve (DuC) Backflow Preventers,”
(c) Class 1 fire sprinkler/standpipe systems not covered by Clause (b) as well as Class 2 and Class 3 fire sprinkler/standpipe systems shall be protected by a double check valve backflow preventer, provided that the systems do not use antifreeze or other additives of any kind. The backflow preventer shall conform to
(i) CSA-B64.5.1, “Double Check Valve Backflow Preventers for Fire Protection Systems (DCVAF)”, or
(ii) CSA-B64.5, “Double Check Valve (DCVAF) Backflow Preventers”,
(d) Class 1, Class 2 and Class 3 fire sprinkler/standpipe systems in which antifreeze or other additives are used shall be protected by a reduced pressure principle backflow preventer installed on the portion of the system that uses the additives and the balance of the system shall be protected as required by Clause (b) or (c). The backflow preventer shall conform to
(i) CSA-B64.4.1, “Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF)”, or
(ii) CSA-B64.4, “Reduced Pressure Principle (RP) Backflow Preventers”,
(e) Class 4 and Class 5 fire sprinkler/standpipe systems shall be protected by a reduced pressure principle backflow preventer conforming to
(i) CSA-B64.4.1, “Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF)”, or
(ii) CSA-B64.4, “Reduced Pressure Principle (RP) Backflow Preventers”,
(f) Class 6 fire sprinkler/standpipe systems shall be protected by a double check valve backflow preventer conforming to
(i) CSA-B64.5.1, “Double Check Valve Backflow Preventers for Fire Protection Systems (DCVAF)”, or
(ii) CSA-B64.5, “Double Check Valve (DCVA) Backflow Preventers”, or
(g) where a potentially severe health hazard may be caused by backflow, Class 6 fire sprinkler/standpipe systems shall be protected by a reduced pressure principle backflow preventer conforming to
(i) CSA-B64.4.1, “Reduced Pressure Principle Backflow Preventers, for Fire Protection Systems (RPF)”, or
(ii) CSA-B64.4, “Reduced Pressure Principle (RP) Backflow Preventers”.
(See Note A-2.6.2.4.(2)).”;
(b)  by replacing Sentence (4) by the following:
(4) Where a reduced pressure principle backflow preventer is required on a water service pipe at a fire service connection located on the same premises as the fire service pipe in Class 3, 4, 5 and 6 fire sprinkler/standpipe systems, a reduced pressure principle backflow preventer shall also be required on the fire service connection and conform to
(i) CSA-B64.4.1, “Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF)”, or
(ii) CSA-B64.4, “Reduced Pressure Principle (RP) Backflow Preventers”.”;
(61)  by adding the following after Article 2.6.2.12.:
2.6.2.13. Personal Hygiene Devices
(1) Water closet personal hygiene devices connected to a potable water system shall have a backflow preventer conforming to CSA-B64.10, “Selection and Installation of Backflow Preventers”.”;
(62)  in Article 2.6.3.2., by replacing “in Table 2.6.3.2.-A” in Sentence (2) by “in Table 2.6.3.2.-A, 2.6.3.2.-B or 2.6.3.2.-C”;
(63)  in Article 2.6.3.2.,
(a)  by replacing the following in Table 2.6.3.2.-A:
Bathtub with 3/4 inch spout3/47.57.5107.57.510
by the following
Bathtub with 3/4 inch spout3/42.252.2534.54.56
”;
(b)  by replacing Tables 2.6.3.2.-B and 2.6.3.2.-C by the following:
Table 2.6.3.2.-B
Sizing of Water Distribution Systems for Urinals with Direct Flush Valves
Forming Part of Sentences 2.6.3.2.(4) and 2.6.3.4.(5)
Fixture or DeviceMinimum Size of Supply Pipe, inchesPrivate Use Hydraulic Load, fixture unitsPublic Use Hydraulic Load, fixture units
ColdHotTotalColdHotTotal
Urinal with direct flush valve3/455
1/22244
Table 2.6.3.2.-C
Sizing of Water Distribution Systems for Water Closets with Direct Flush Valves
Forming Part of Sentences 2.6.3.2.(4) and 2.6.3.4.(5)
Fixture or DeviceMinimum Size of Supply Pipe, inchesPrivate Use Hydraulic Load, fixture unitsPublic Use Hydraulic Load, fixture units
ColdHotTotalColdHotTotal
Water closet with direct flush valve1661010
”;
(64)  in Article 2.6.3.4.,
(a)  by replacing “to Table 2.6.3.2.-A.” in Sentence (2) by “to Table 2.6.3.2.-A, 2.6.3.2.-B, 2.6.3.2.-C or 2.6.3.2.-D.”;
(b)  by striking out the note at the bottom of Table 2.6.3.4.;
(65)  in Article 2.6.3.5., by replacing “pipe and fitting manufacturer.” at the end of Sentence (1) by “pipe and fitting manufacturer without ever exceeding 3.0 m/s.”;
(66)  in Article 2.7.3.2., by replacing “An outlet” at the beginning of Sentence (1) by “Except as provided in Sentence (2) of Article 2.7.4.1., an outlet”;
(67)  in Article 2.7.4.1., by replacing Sentence (2) by the following:
(2) Non-potable water systems shall only be used to supply
(a) water closets,
(b) urinals, or
(c) sinks in tourist establishments covered by Chapter V.1 of the Regulation respecting the quality of drinking water (chapter Q-2, r. 40).”;
(68)  by replacing Table 2.8.1.1. in Article 2.8.1.1. by the following:
(69)  by inserting, in Tables A-2.2.5., 2.2.6. and 2.2.7., after
PVC fittings, Schedule 80ASTM D 24672.2.5.7.2.(2)NNNNNNP(4)(5)PP
”,
the following:
Pipes made of polyethylene of raised temperature resistance (PE-RT)CSA B137.182.2.5.14.(1)NNNNNP(4)(5)P(4)(5)PP
”;
(70)  by adding the following after note A-2.2.5.13.:
A-2.2.5.14. (1) Pipes Made of Polyethylene of Raised Temperature Resistance. It should be pointed out that CSA B137.18, “Polyethylene of Raised Temperature Resistance (PE-RT) Tubing Systems for Pressure Applications”, has specific installation requirements that shall be met.”;
(71)  by replacing note A-2.2.10.7. by the following:
A-2.2.10.7. Water Temperature Control. Hot water produced by a service water heater shall be at a minimum temperature of 60 °C to prevent the development of potentially fatal bacteria. At that temperature, water causes second degree burns to the skin in 1 to 5 seconds. Consequently, Article 2.2.10.7. provides for the installation and adjustment of valves, mixing valves and limiting devices to provide a water outlet temperature that is lower than the temperature produced by a service water heater. Compliance with that Article reduces the risk of scalding in showers and bathtubs, where severe burns occur, and reduces the risk of thermal shock that may occur in the shower and lead to falls.
Children, the elderly and persons with disabilities are particularly at risk of scald burns because they are not always able to remove themselves quickly from a situation that could lead to burns. At 49 °C, the time for a scald burn to occur on a healthy adult is nearly 10 minutes, whereas the time for a skin burn to occur on an elderly is 3 minutes, because the elderly’s skin is thinner and less vascularized. For those persons, a temperature of 43 °C provides a more adapted protection against burns because they can only occur after a number of hours of exposure.
In private seniors’ residences and care occupancies, Article 2.2.10.7. provides that the valves and thermostatic-mixing valves shall be adjusted to provide a maximum water outlet temperature at 43 °C. The installation of pressure-balanced valves is also prohibited, because those valves are sensitive to seasonal changes of the cold water temperature and require some settings per year in order not to exceed the prescribed temperature.
The water outlet temperature at other fixtures, such as lavatories, sinks, laundry trays or bidets, is not addressed by Article 2.2.10.7., but a scald risk may exist at such fixtures nonetheless.”;
(72)  by replacing Figure A-2.3.3.9. in note A-2.3.3.9. by the following:
”;
(73)  by replacing Figure A-2.4.2.1.(2) in note A-2.4.2.1.(2) by the following:
”;
(74)  by replacing note A-2.4.2.1.(4) by the following:
A-2.4.2.1.(4) Soil-or-Waste Pipe Connections.
A-2.4.2.1.(5) Soil-or-Waste Pipe Connections.
A-2.4.2.1.(6) and (7) Suds pressure zones. High sudsing detergents used in clothes washers produce suds that tend to disrupt the venting action of venting systems and can also spread through the lower portions of multi-storey drainage systems. The more turbulence, the greater the suds. One solution that avoids the creation of suds pressure zones involves connecting the suds-producing stack downstream of all other stacks and increasing the size of the horizontal building drain to achieve a greater flow of air and water. Using streamlined fittings, such as wyes, tends to reduce suds formation. Check valves or backwater valves in fixture outlet pipes have also been used to correct problem installations.
”;
(75)  by replacing note A-2.4.4.3.(1) by the following:
A-2.4.4.3.(1) Grease Interceptors. Grease interceptors may be required when it is considered that the discharge of fats, oil or grease may impair the drainage system. Further information on the design and sizing of grease interceptors can be found in ASPE document “Data Book – Volume 4, Chapter 8, Grease Interceptors” or in CAN/CSA-B481 Series.”;
(76)  by replacing note A-2.4.5.3.(1) by the following:
A-2.4.5.3.(1) Subsoil Drainage Connections. This Code does not regulate the installation of subsoil drainage pipes, but does regulate the connection of such pipes to the plumbing system. The intent of this Article is to place a trap between the subsoil drainage pipe and the storm water or combined system. The cleanout shall be installed in accordance with Sentence 2.4.7.1.(2).
”;
(77)  in note A-2.4.5.5.(1), by striking out “Periodic manual replenishment of the water in a trap is considered to be an equally effective means of maintaining the trap seal in floor drains in residences.”;
(78)  by inserting the following after note A-2.4.5.5.(1):
A-2.4.5.5.(2) Maintaining Trap Seals in Floor Drains in Dwelling Units. Periodic manual replenishment of the water in a trap maintains the trap seal in floor drains in dwelling units.”;
(79)  by striking out note A-2.4.6.4.(6);
(80)  by replacing note A-2.4.8.2.(1) by the following:
A-2.4.8.2.(1) Island Fixture Installation.
”;
(81)  in note A-2.5.2.1.,
(a)  by replacing Figure A-2.5.2.1.-E by the following:
”;
(b)  by replacing Figure A-2.5.2.1.-F by the following:
”;
(82)  by replacing note A-2.5.5.2. by the following:
A-2.5.5.2. Venting of Oil Interceptors.
”;
(83)  by replacing note A-2.6.1.12.(1) by the following:
A-2.6.1.12.(1) Service Water Heater. Water in a service water heater or in a distribution system that is kept at less than 60 °C permits Legionella bacteria to survive and thrive. Water heated at a temperature equal to or greater than 60 °C reduces bacterial contamination of the hot water distribution system.”;
(84)  in note A-2.6.3.1.(2), by inserting the following after the title “Method for Small Buildings”:
Small building means a building of groups A, D, E, F2 or F3, as defined in Subsection 3.1.2., Division B of the NBC, not more than 3 storeys in building height (according to the definition of the NBC), and having a building area not more than 600 m2.”;
(85)  by striking out “and irrigating lawns and gardens” after “such as flushing toilets” in note A-2.7.4.1.
O.C. 294-2008, s. 1; O.C. 939-2009, s. 6; O.C. 1202-2012, s. 1; O.C. 30-2014, s. 4; I.N. 2014-07-01; O.C. 65-2021, s. 1.
3.06. The Code is amended in Division C,
(1)  by striking out Subsection 2.2.1.;
(2)  by replacing Subsection 2.2.2. by the following:
2.2.2. Plans and Specifications
2.2.2.1. Requirements
(1) A plumbing contractor or owner-builder may not begin construction work on a plumbing system to which Chapter III of the Construction Code applies unless there are plans and specifications for the work, if the total hydraulic load to be installed exceeds 180 fixture units.
(2) Sentence (1) does not apply to construction work on a plumbing system in a building to which Part 9 of Division B of the National Building Code, as adopted by Chapter I of the Construction Code, applies.
(3) When required, the plans and specifications shall be available on the worksite.
2.2.2.2. Content
(1) Plans shall be drawn to scale and show
(a) a plan view of the location and dimension of the drains and cleanouts, the location of fixtures and the water distribution system,
(b) an elevation view of the location of fixtures and traps, the dimension of drains, leaders, soil-or-waste stacks, stack vents and vent stacks as well as the water distribution system;
(c) the connection of the subsoil drainage pipe if it enters the building.”;
(3)  by adding the following after Subsection 2.2.2.:
2.2.3. Approval of Materials
2.2.3.1. Approved Materials, Fixtures and Facilities used in a Plumbing System
(1) In a plumbing system, only materials, fixtures or facilities that are certified or approved by one of the following organizations may be used:
(a) Canadian Gas Association (CGA),
(b) Bureau de normalisation du Québec (BNQ),
(c) CSA Group (CSA),
(d) IAPMO Group (UPC),
(e) Underwriters’ Laboratories of Canada (ULC),
(f) NSF International (NSF),
(g) Canadian General Standards Board (CGSB),
(h) Quality Auditing Institute (QAI),
(i) Intertek Testing Services NA Itd. (ETL),
(j) Underwriters Laboratories Inc. (UL),
(k) Water Quality Association (WQA),
(l) ICC Evaluation Service (ICC-ES),
(m) any other organization accredited by the Standards Council of Canada as a certifying organization in the field of plumbing which has notified the Board of its accreditation.
2.2.3.2. Sale and lease
(1) Materials, fixtures or facilities that may be used in a plumbing system shall be certified or approved by an organization listed in Sentence 2.2.3.1.(1) before being sold or leased.
2.2.4. Declaration of Work
2.2.4.1. Application
(1) A plumbing contractor or owner-builder shall declare to the Board all construction work performed and to which Chapter III of the Construction Code applies if the work pertains to a new plumbing system or requires the replacement of a service water heater or pipes.
2.2.4.2. Submission of the Declaration
(1) The declaration required under Article 2.2.4.1. shall be forwarded to the Board not later than the twentieth day of the month following the date on which work starts.
2.2.4.3. Form
(1) The declaration of work shall be made on the form provided by the Board or on any other document prepared for that purpose.
2.2.4.4. Content
(1) The declaration shall contain
(a) the address of the site where the work is performed,
(b) the name, address and telephone number of the person for whom the work is performed,
(c) the name, address, telephone number and licence number of the plumbing contractor or owner-builder, where applicable,
(d) the estimated start and end dates of the construction work,
(e) the nature and type of the work,
(f) the occupancy of the building or facility intended for use by the public and the existing and planned number of storeys, and
(g) the number of fixtures and service water heaters to be installed.
2.2.5. Fees Payable
2.2.5.1. Calculation
(1) The following fees shall be paid to the Board by the plumbing contractor or owner-builder, when the plumbing contractor declares the construction work pertaining to plumbing systems for which a declaration is required under Article 2.2.4.1.:
(a) $163.65 for a new single-family detached or semi-detached house or row house,
(b) $99.07 per dwelling unit other than those covered by Clause (a) for the construction of a new building intended for housing or for the conversion of a building of another nature into a building intended for housing, regardless of the number of fixtures and service water heaters, or
(c) in the case of work other than work covered by Clauses (a) and (b),
(i) $13.14 per fixture or service water heater, where the work is performed on more than one, or
(ii) $22.53 where the work is performed on only one or no fixture or service water heater.
(2) A plumbing contractor or owner-builder shall pay the following inspection fees to the Board for the inspection of a plumbing system following the issue of a remedial notice provided for in section 122 of the Building Act (chapter B-1.1):
(a) $110.54 for the first hour or any fraction thereof,
(b) half the hourly rate established in Clause (a) for each half-hour or fraction thereof added to the first hour,
(3) A plumbing owner-builder shall pay to the Board the inspection fees fixed in Clauses (a) and (b) of Sentence (2) for the inspection of a plumbing system.
2.2.5.2. Sending
(1) The fees payable under Sentence 2.2.5.1.(1) shall be included with the declaration of work required under Article 2.2.4.1.
(2) The fees payable under Sentences 2.2.5.1.(2) and (3) shall be paid not later than 30 days after the billing date.”;
(4)  by replacing Subsection 2.3.1. by the following:
2.3.1. Approval of Alternative Solutions
2.3.1.1. Conditions for Approval
(1) The proposed alternative solutions shall be approved by the Board on the conditions it sets pursuant to section 127 of the Building Act (chapter B-1.1).”.
O.C. 294-2008, s. 1; O.C. 939-2009, s. 7; O.C. 30-2014, s. 5; O.C. 65-2021, s. 1.
DIVISION III
OFFENCE
O.C. 294-2008, s. 1; O.C. 65-2021, s. 1.
3.07. Every contravention against a provision of this Chapter, except Subsection 2.2.5 of Division C of the Code, introduced by paragraph 3 of section 3.06, constitutes an offence.
O.C. 294-2008, s. 1; O.C. 65-2021, s. 1.
CHAPTER IV
ELEVATORS AND OTHER ELEVATING DEVICES
O.C. 895-2004, s. 1.
DIVISION I
INTERPRETATION
O.C. 895-2004, s. 1.
4.01. In this Chapter, unless the context indicates otherwise, “Code” means the “Code de sécurité sur les ascenseurs et monte-charge, CAN/CSA B44-00”, including the updates of June, November and December 2003, the “CSA Standard CAN/CSA B44-00: Safety Code for Elevators” including the updates of September 2002, May and December 2003, and “standard” means the standard “Appareils élévateurs pour personnes handicapées, CAN/CSA B355-00” including the amendments of “B355S1-02 Supplément no 1 à CAN/CSA B355-00 Appareils élévateurs pour personnes handicapées” and the updates of March 2002 and October 2003, “CSA Standard CAN/CSA B355-00: Lifts for Persons with Physical Disabilities”, including the amendments of “B355S1-02 Supplement No. 1 to CAN/CSA-B355-00, Lifts for Persons with Physical Disabilities” and the updates of March 2002 and October 2003 or the standard “Appareils élévateurs d’habitation pour personnes handicapées, CAN/CSA B613-00”, including the update of January 2002, “CSA Standard CAN/CSA B613-00: Private Residence Lifts for Persons with Physical Disabilities”, including the update of January 2002, published by the Canadian Standards Association, as well as such subsequent amendments as may be published by that organization.
However, any amendments that are published after the date of 21 October 2004 apply to construction work only from the date that corresponds to the last day of the sixth month following the month of publication of the French text of those amendments.
O.C. 895-2004, s. 1; O.C. 635-2012, s. 1.
DIVISION II
APPLICATION OF CODES AND STANDARDS
O.C. 895-2004, s. 1.
4.02. Subject to the amendments provided for in Division VII of this Chapter, the codes, standards and provisions of this Chapter apply to all construction work on an elevator or other elevating device referred to in the codes and standards and installed in a building or constituting facilities intended for use by the public designated by regulation made by the Government under subparagraph 4 of the first paragraph of section 182 of the Building Act (chapter B-1.1) to which the Act applies and that is carried out from the 21 October 2004.
3. Despite this section, for construction work other than maintenance, repair or demolition work, for which contracts were signed before 21 October 2004, a contractor may meet the requirements of either the Regulation respecting the application of a safety code for elevators and a standard for lifts for persons with physical disabilities (O.C. 111-97, 97-01-29) or the Regulation respecting passenger ropeways (O.C. 2476-82, 82-10-27) provided the construction work begins before 19 April 2005.(O.C. 895-2004, s. 4)
O.C. 895-2004, s. 1.
DIVISION III
REFERENCES
O.C. 895-2004, s. 1.
4.03. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 895-2004, s. 1; O.C. 1263-2012, s. 2; O.C. 1419-2021, s. 2.
DIVISION IV
PLANS AND SPECIFICATIONS
O.C. 895-2004, s. 1.
4.04. A contractor or owner-builder may not begin construction work, except maintenance, repair or demolition work, on an elevator or other elevating device to which Chapter IV of the Construction Code applies, unless the plans and specifications have been prepared for the work, where information is required, in respect of the work, under section 2.28 or 3.28 of the Code.
The plans shall be drawn to scale and shall, with the specifications, indicate the nature and scope of the work in such manner as to establish if the work carried out complies with section 4.02.
O.C. 895-2004, s. 1.
DIVISION V
INSTALLATION
O.C. 895-2004, s. 1.
4.05. A contractor or owner-builder may not install an elevator or other elevating device unless it meets the design and manufacturing requirements of the Code or standards referred to in section 4.01, as the case may be.
O.C. 895-2004, s. 1.
4.06. A contractor or owner-builder may not install a lift for persons with physical disabilities unless the prototype has been approved by an engineer who is a member of the Ordre des ingénieurs du Québec, or by the holder of a temporary licence issued under the Engineers Act (chapter I-9), whose professional activities are related to the field of elevators or other elevating devices. The approval must certify that the prototype complies with the standards referred to in section 4.01 and that the approval has been sent to the Régie du bâtiment du Québec.
The type, trademark, model number and features of the approved prototype and the name of the manufacturer shall be entered on the list of the approved prototypes of lifts for persons with physical disabilities that is made public by the Board.
O.C. 895-2004, s. 1.
DIVISION VI
DECLARATION OF WORK
O.C. 895-2004, s. 1.
4.07. A contractor or owner-builder shall, after construction work, except maintenance, repair or demolition work on an elevator or other elevating device referred to in section 4.02, declare the work to the Board with the following information:
(1)  the components that were subject to tests and inspections provided for the elevating device when required under 8.10 of the Code or Appendix A “Inspection and Testing” of “CSA Standard CAN/CSA B355-00: Lifts for Persons with Physical Disabilities”;
(2)  the name, address and telephone number of the person for whom the work is carried out;
(3)  the name, address and telephone number of the person who prepared the plans and specifications related to the construction work;
(4)  the address of the site and nature of the work;
(5)  the type, trademark and model of the device, the name of the manufacturer and the technical features of the device; and
(6)  the date and place where the tests and inspections were conducted together with the name and title of the person by whom they were performed.
The declaration must be sent to the Board no later than on the twentieth day of the month that follows the completion of the work or the re-use of the elevator or elevating device, as the case may be. The declaration must be made on the form provided for that purpose by the Board or on any other document drawn up for that purpose.
O.C. 895-2004, s. 1.
DIVISION VII
AMENDMENTS TO THE CODE
O.C. 895-2004, s. 1.
4.08. Code CSA B44-00 is amended
(1)  by replacing the definition of “authority having jurisdiction” in 1.3 by the following:
authority having jurisdiction: Régie du bâtiment du Québec”;
(2)  by adding “The term also includes a funicular railway.” at the end of the definition of “elevator, inclined” in 1.3;
(3)  by replacing the definition of “regulatory authority” in 1.3 by the following:
regulatory authority: Régie du bâtiment du Québec”;
(4)  by replacing “inspection”, “inspecter” and “inspecté” wherever those words appear in the French text by “vérification”, “vérifier” and “vérifié”, with the necessary modifications;
(5)  by replacing “possible” in 2.11.6.2 of the French text by “impossible”;
(6)  by replacing “MAINTENIR” in figure 2.27.7.2 of the French text by “ATTENTE”;
(7)  by replacing “c8.6.12.1.1” in c8.6.12.1.1 of the French text by “c8.6.12”;
(8)  by replacing “c8.6.12.1.2” in c8.6.12.1.2 of the French text by “c8.6.12”;
(9)  by replacing “the contractor” in c8.6.12.4.1.1 by “the contractor or owner-builder”;
(10)  by replacing “contractor” in c8.6.12.2.5 by “contractor or owner-builder”;
(11)  by striking out “by an inspector employed by the authority having jurisdiction, or” in 8.10.1.1.1;
(12)  by striking out “in the presence of the inspector specified in 8.10.1.1.1” in 8.10.1.1.2;
(13)  by adding “NOTE: 8.11 becomes the first part of Appendix N.” in 8.11.”.
O.C. 895-2004, s. 1.
DIVISION VIII
PENAL
O.C. 895-2004, s. 1.
4.09. Any contravention of any of the provisions of this Chapter constitutes an offence.
O.C. 895-2004, s. 1.
CHAPTER V
ELECTRICITY
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
DIVISION I
SCOPE
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
5.01. In this Chapter, unless the context indicates otherwise, “Code” means the Canadian Electrical Code, Part I, Twenty-third edition, CSA C22.1-15, published by CSA Group, as well as any subsequent amendments that may be published by that organization.
That Code is incorporated by reference into this Chapter subject to the amendments provided for in section 5.05.
However, any amendments to that edition published by CSA Group after 1 October 2018 will apply to construction work only from the last day of the sixth month following the publication of the French and English versions of those amendments. If those versions are not published at the same time, the 6-month period runs from the date of publication of the last version.
The provisions of the third paragraph do not apply to errata, which take effect as soon as they are published by CSA Group.
O.C. 961-2002, s. 5; O.C. 1385-2003, s. 1; O.C. 986-2006, s. 1; O.C. 577-2007, s. 1; O.C. 939-2009, s. 8; O.C. 1062-2010, s. 1; O.C. 722-2018, s. 1.
5.02. Subject to the exemptions provided for in section 5.03, this Chapter applies to any construction work on an electrical installation within the meaning of the Code and covered by the Building Act (chapter B-1.1).
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
5.03. The following installations are exempt from this Chapter:
(1)  an electric lighting installation attached to a pole used to distribute electric power by a public electricity distribution undertaking;
(2)  an installation used for the operation of a subway and powered exclusively by circuits supplying the railway of that subway.
O.C. 961-2002, s. 5; O.C. 1263-2012, s. 2; O.C. 722-2018, s. 1.
5.03.01. (Replaced).
O.C. 1385-2003, s. 3; O.C. 722-2018, s. 1.
DIVISION II
REFERENCES
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
5.04. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 961-2002, s. 5; O.C. 1385-2003, s. 3; O.C. 577-2007, s. 2; O.C. 1062-2010, s. 3; O.C. 347-2015, s. 2; O.C. 722-2018, s. 1; O.C. 1419-2021, s. 2.
DIVISION III
AMENDMENTS TO THE CODE
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
5.05. The Code is amended
(1)  in Section 0:
(1)  by striking out the following portion of the second paragraph of “Object”: “Safe installations may be also achieved by alternatives to this Code, when such alternatives meet the fundamental safety principles of IEC 60364-1 (see Appendix K). These alternatives are intended to be used only in conjunction with acceptable means to assess compliance of these alternatives with the fundamental safety principles of IEC 60364-1 by the authorities enforcing this Code.”;
(2)  by striking out the part “Scope”;
(3)  by striking out the definition of “Energized”;
(4)  by replacing the definition of “Electrical installation” by the following:
Electrical installation”: the installation of any wiring in or upon any land or in a building from the point or points where electric power or energy is delivered therein or thereon by the supply authority or from any other source of supply, to the point or points where such power or energy can be used therein or thereon by any electrical equipment and shall include the connection of any such wiring with any of the said equipment (see Appendix B).”;
(5)  by striking out the definition of “Permit”;
(6)  by striking out the definition of “Current-permit”;
(7)  by striking out the definition of “Energized part”;
(8)  by inserting the following definition after “Conduit”:
Connecting point: The point at which the consumer’s service entrance is connected to the distributor’s supply, as specified by the supply authority.”;
(2)  in Section 2:
(1)  by striking out Rule 2-000;
(2)  by replacing Rule 2-004 by the following:
2-004 Declaration of work
(1)  An electrical contractor or owner-builder shall declare to the Régie du bâtiment du Québec the construction work carried out to which Chapter V Electricity of the Construction Code (chapter B-1.1, r. 2) applies.
(2)  The declaration shall contain the following information:
(a)  the address of the work site;
(b)  the name, address and telephone number of the person for whom the work is carried out;
(c)  the name, address, telephone number and licence number of the electrical contractor or owner-builder;
(d)  the dates scheduled for the beginning and end of the construction work;
(e)  the nature and type of work, in particular the specific kind of work and a description of the powers to be installed; and
(f)  the use of the building or installation and the number of stories and dwellings in the building.
(3)  The declaration shall be made on the form provided for that purpose by the Board or on any other document containing the information required by Subrule (2).
(4)  The declaration shall be sent to the Board not later than the twentieth day of the month following the date on which the work begins.
(5)  Notwithstanding Subrule (1), the declaration of work is not required
(a)  in the case of work mentioned in a request for supply made to a supply authority;
(b)  in the case of work involving power of no more than 10 kW that does not require a replacement or addition of wiring; or
(c)  from an owner-builder who keeps a register containing the information mentioned in Subrule (2).”;
(3)  by striking out Rule 2-006;
(4)  by replacing Rule 2-008 by the following:
2-008 Levies and fees
(1)  The levy which every electrical contractor shall pay annually to the Régie du bâtiment du Québec is $861.39 plus an amount corresponding to a non-indexable value of 2.5% of the contractor’s payroll.
(2)  For the purposes of this Rule, “payroll” means the total of payments made, before deductions, to apprentice electricians and journeyman electricians carrying out construction work on an electrical installation, including hourly or piece-work wages, commissions, bonuses, pay for leave and any other form of remuneration. The payments made annually to an apprentice electrician or a journeyman electrician by an electrical contractor are presumed to be made to a person assigned to construction work on an electrical installation.
(3)  The following payments are not included in the payroll:
(a)  payments to a person who qualifies an electrical contractor for the issue of a licence because of his or her technical knowledge;
(b)  payments for construction work on an electrical installation at a hydroelectric power station at the time of the original construction.
(4)  An electrical contractor renting the services of an apprentice electrician or a journeyman electrician through a third party that does not hold a licence shall include the cost of those services in calculating the payroll.
(5)  An apprentice electrician or a journeyman electrician who is a partner in a partnership is, for calculation of the payroll, presumed to receive annual wages of $40,546.57 for the electrical installation work he or she carries out for the partnership.
(6)  The fixed amount of the levy to be paid under Subrule (1) is established in proportion to the number of months for which the licence is valid, a part of a month being considered a full month.
(7)  In the case of voluntary abandonment of a holder’s licence, the validity period of the licence is deemed to have ended on the date on which the Board received a notice to that effect.
(8)  An electrical contractor shall pay the levy under this Rule to the Board not later than:
(a)  31 May for a payroll calculated for the period from 1 January to 31 March of the current year;
(b)  31 August for a payroll calculated for the period from 1 April to 30 June of the current year;
(c)  30 November for a payroll calculated for the period from 1 July to 30 September of the current year;
(d)  28 February for a payroll calculated for the period from 1 October to 31 December of the preceding year.
(9)  Each payment shall also include the applicable portion of the fixed amount of the levy. An electrical contractor shall provide with each payment a written statement indicating the portion of the payroll applicable to each apprentice electrician or journeyman electrician identified by name. If a licence is issued to the electrical contractor during the year, the first statement and the first payment shall be made on the first date in Subrule (8) that is at least 2 months after the issue of the licence.
(10)  If an electrical contractor fails to send the statement required under this Rule to the Board, or if the Board has reason to believe that the statement is inaccurate, the Board shall make an estimate of the contractor’s payroll. In such a case, it is the contractor’s responsibility to demonstrate that the estimate is inaccurate.
(11)  If it is established that an electrical contractor’s payroll differs from the amount used to establish the levy, the Board shall bill or credit, as the case may be, an amount equal to the difference between the amount levied and the amount calculated according to the actual payroll.
(12)  The levy that an electrical owner-builder shall pay annually to the Board in accordance with Subrule (8) is $646.08, plus inspection fees of $161.52 for the first hour of inspection or fraction thereof and half that rate for each half-hour or fraction thereof of inspection in addition to the first hour; an amount of $80.38 for each trip related to the inspection shall be added to those fees.
(13)  The fees payable under Subrule (12) shall be paid not later than 30 days after the billing date.”;
(5)  by deleting Rules 2-010 and 2-012;
(6)  by replacing Rule 2-014 by the following:
2-014 Plans and specifications
(1)  An electrical contractor or owner-builder shall not start construction work on an electrical installation to which Chapter V Electricity of the Construction Code (chapter B-1.1, r. 2) applies unless plans and specifications have been prepared for the work if the installation requires a service exceeding 200 kW.
(2)  The plans and specifications referred to in Subrule (1) shall contain the following information:
(a)  name and address of the person responsible for preparing them;
(b)  type of building or electrical installation and the location of the work;
(c)  location of the service line and distribution;
(d)  the supply voltage and the single-line diagram of the service line and distribution;
(e)  loads, protection characteristics and identification of the feeder and branch circuits at their respective panelboards;
(f)  rated power of each apparatus;
(g)  type and size of raceways to be used;
(h)  number and characteristics of conductors used in the raceways;
(i)  cable characteristics;
(j)  type of materials, accessories or apparatus installed in hazardous locations;
(k)  size and location of grounding conductors;
(l)  a description of all underground parts of the installation;
(m)  for an addition to an existing electrical installation, all information on the part of the installation on which work is to be carried out and a list of the existing loads or of the maximum demand loads of the existing installation recorded for the last 12 months; and
(n)  for an electrical installation exceeding 750 V, the vertical and horizontal clearances of live parts and a description of the grounding and mechanical protection of live parts.”;
(7)  by deleting Rules 2-016 to 2-020;
(8)  by replacing Rules 2-024 to 2-028 by the following:
2-024 Approval of electrical equipment used in an electrical installation, intended to consume energy from an electrical installation or to supply such an installation (see Appendices A and B)
(1)  The selling or renting of electrical equipment that has not been approved is prohibited.
(2)  All electrical equipment used in an electrical installation shall be approved for the use for which it is intended. In addition, the use of electrical equipment that has not been approved in an electrical installation or the permanent connection of such equipment to such an installation is prohibited. However, for purposes of a test, exhibition, presentation or demonstration, electrical equipment shall be permitted to be used without being approved if a notice containing the following warning in letters at least 15 mm high is posted: “NOTICE: This electrical equipment has not been approved for sale or rental as required by Chapter V Electricity of the Construction Code (chapter B-1.1, r. 2).
(3)  Subrules (1) and (2) do no not apply to electrical equipment
(a)  located upstream from the connecting point;
(b)  intended to be interconnected, in accordance with section 84 of the Code;
(c)  located upstream from a stand-alone inverter; or
(d)  whose power consumption is not more than 100 VA and whose voltage is not more than 30 V, except in the case of signs, lighting devices, luminaries, thermostats with heat anticipators, electromedical devices or apparatus installed in a hazardous location.
2-025 Approval of a Portable Generator
The selling or renting of a portable generator that has not been approved is prohibited.
2-028 Mark of Approval (see Appendix A)
(1)  Electrical equipment that has received certification by a certification organization accredited by the Standards Council of Canada that has notified the Board of its accreditation and whose certification seal or label attests to compliance with Canadian standards is considered to be approved.
(2)  Electrical equipment bearing the label of an organization accredited by the Standards Council of Canada that has notified the Board of its accreditation attesting that, without being certified in accordance with Subrule (1), the equipment is recognized as complying with the requirements of CSA SPE-1000-13, “Model Code for the Field Evaluation of Electrical Equipment”, or with the requirements of CSA SPE-3000-15, “Model Code for the Field Evaluation of Medical Electrical Equipment and Systems”, published by CSA Group, is also considered to be approved. However, amendments or subsequent editions of those Standards shall apply, for the purposes of this section, from the publication of their French and English versions. If those versions are not published at the same time, the amendments or editions shall apply as of the publication of the last version.
(3)  Notwithstanding Subrules (1) and (2), approval is not required for each of the components of electrical equipment if the equipment has received an overall approval.”;
(9)  by striking out Rules 2-128 to 2-132;
(10)  by replacing Rule 2-324 by the following:
2-324 Electrical equipment near a venting or relief discharge for combustible gas (see Appendix B)
(1)  Arc-producing electrical equipment shall be installed at least 3 m from any venting or relief discharge for combustible gas.
(2)  Notwithstanding Subrule (1), in the case of natural gas, the distance shall be permitted to be 1 m.”;
(11)  by adding the following heading and Rule after Rule 2-404:
Circuits from different buildings
2-500 Feeder or branch circuit from another building (see Appendix B)
A feeder or branch circuit from another building shall not be installed to serve electric equipment linked to a building already supplied by a separate consumer’s service, except
(a)  in the case of emergency power sources; or
(b)  in the cases provided for in Rule 6-106.”;
(3)  in Section 4:
(1)  by replacing Rules 4-006 (3), (4), (5) and (6) by the following:
“(3) Except for underground installations, Subrules (1) and (2) shall also apply to any allowable ampacity obtained from tables other than those mentioned in Subrule (1). If values different from those at 90 °C are not indicated in those tables, the correction factors in Table 12C shall then be applied.”;
(2)  by adding the following Subrule at the end of Rule 4.024:
“(5) Notwithstanding Subrule (3), for underground consumer’s services exceeding 600 A fed by parallel conductors, each neutral conductor shall be minimally sized in accordance with Table 69.”;
(4)  in Section 6:
(1)  by replacing Rule 6-104 by the following:
6-104 Number of consumer’s services
(1)  The number of low-voltage consumer’s services terminating at any one overhead supply service run shall be limited by the following factors:
(a)  the total calculated load shall not exceed 600 A; and
(b)  the number of conductors connected to each supply service conductor shall not exceed 4.
(2)  In the case of a change to the electrical installation of a building with more than 4 conductors connected to one supply service conductor, replacement of the conductors shall be permitted provided that the total number of conductors is not increased and the total calculated load does not exceed 600 A.”;
(2)  in Rule 6-112:
(a)  by replacing “9 m” in Subrule (2) by “8 m”;
(b)  by adding the following after Subrule (8):
“(9) Notwithstanding Subrule (2), in the case of an existing installation and where it is impossible to comply with the minimum 1 m clearance set out in Subrule (3), the height of the point of attachment of service conductors shall be not more than 9 m, if such a measurement allows compliance with the clearance required.
(10) Notwithstanding Subrules (2) and (9), in the case of an existing installation and where it is impossible to comply with the minimum 1 m clearance set out in Subrule (3), it shall be permitted to install a barrier made of solid material so as to make service conductors exposed to persons from a window, door or porch permanently inaccessible.
(11) Notwithstanding Subrule (6), in the case of an existing installation in which the service presents no noise problem due to the amplification of vibrations caused by the mutual repulsion of the conductors, it shall be permitted to fasten the service conductor support to a solid wooden structural member of a wall with a lag screw not less than 9 mm in diameter. The threaded part of the lag screw shall penetrate the solid wooden structural member to a depth of at least 75 mm.”;
(3)  by replacing Rule 6-206 by the following:
6-206 Consumer’s service equipment location (see Appendices B and G)
(1)  Service boxes or other equivalent consumer’s service equipment shall be
(a)  installed in a location that complies with the requirements of the supply authority;
(b)  readily accessible or have the means of operation readily accessible; and
(c)  except as provided by Subrules (3), (4), (5), and (6), placed within the building being served, as close as practicable to the point where the consumer’s service conductors enter the building and not located in
i.  coal bins, clothes closets, bathrooms, or stairways;
ii.  rooms in which the temperature normally exceeds 30 °C;
iii.  dangerous or hazardous locations;
iv.  locations where the headroom clearance is less than 2 m, except in the case of a renovation in a building, provided that the existing clearance is not reduced; or
v.  any other similar location.
(2)  Notwithstanding Subrule (1)(b), where subject to unauthorized operation, the service disconnecting means shall be permitted to be rendered inaccessible by
(a)  an integral locking device;
(b)  an external lockable cover; or
(c)  location of the service box or its equivalent inside a separate building, room, or enclosure.
(3)  Notwithstanding Subrule (1)(c), if the environmental conditions inside the structure are not acceptable, it shall be permitted, where a deviation has been allowed in accordance with Rule 2-030, to place the service disconnecting means on the outside of the building or on a pole provided that it is
(a)  installed in an enclosure approved for the location or of the type approved as protected against the weather; and
(b)  protected against mechanical damage if it is located less than 2 m above ground.
(4)  Notwithstanding Subrule (1)(c), in the case of single dwellings or apartment and similar buildings, the service box shall be permitted to be a meter mounting device equipped with a combined breaker outside the building or on a post, provided that an associated distribution panelboard equipped with a main breaker of a current rating equal to or lower than that of the meter mounting device is used inside the building. The service box shall
(a)  be weatherproof and specifically approved for that use;
(b)  be protected against mechanical damage if installed less than 2 m above ground;
(c)  be equipped with a lockable outside cover; and
(d)  supply only one feeder dedicated to the associated distribution panelboard.
(5)  The meter mounting devices installed in compliance with Subrule (4) shall be grouped.
(6)  The consumer’s service heads connected to the meter mounting devices installed in accordance with Subrules (4) and (5) shall be grouped so as to require a single connecting point.”;
(4)  by replacing Rule 6-300(1)(b)(ii)(B) by the following:
“(B) where a conductor transition is necessary to compensate for a voltage drop provided for in Rule 8-102, provided that the conditions set out in Rule 12-112 (5) (a) or (b) are complied with (see Appendix B).”;
(5)  by replacing Rule 6-302(2) by the following:
“(2) Except for an installation or an existing trestle, no portion of the conductors that is run on the supply side of the consumer’s service head on outside building surfaces shall be permitted to be run as exposed wiring.”;
(6)  in Rule 6-308, by inserting “Except for 347/600 V underground consumer’s service in a raceway,” at the beginning;
(7)  by replacing Rule 6-310 (c) by the following:
(c) where a conductor transition is necessary to compensate for the voltage drop provided for in Rule 8-102, provided that the conditions set out in Rule 12-112(5) are complied with.”;
(5)  in Section 8:
(1)  by striking out Rule 8.002;
(2)  by striking out Rule 8-102(3) and (4):
(3)  by replacing Rule 8-106(6) to (10) by the following:
“(6) The ampacity of conductors of feeders or branch circuits shall be determined in accordance with the Section(s) dealing with the type of equipment being supplied.
(7) Notwithstanding the requirements of this Section, the ampacity of the conductors of a feeder or branch circuit shall not be required to exceed the ampacity of the conductors of the service or of the feeder from which they are supplied.
(8) Where additional loads are to be added to an existing service or feeder, the augmented load shall be permitted to be calculated by adding the sum of the additional loads, with demand factors as permitted by this Code to the maximum demand load of the existing installation as measured over the most recent 12-month period, but the new calculated load shall be subject to Rule 8-104(5) and (6).
(9) The method of calculation in Subrule (8) shall be permitted to be used for the replacement of a service or feeder of an existing installation, with or without additional load.”;
(4)  in Rule 8-108:
(a)  by replacing the part of Subrule (1) preceding Subrule (1)(a) by the following:
“(1) For a single dwelling, the panelboard shall provide space for at least the equivalent of the following number of 120 V branch circuit overcurrent devices, including enough space for two 35 A double-pole overcurrent devices and for all the other devices required:”;
(b)  by replacing Subrule (2) by the following:
“(2) Notwithstanding Subrule (1), sufficient spaces for overcurrent devices shall be provided in the panelboard for the two 35 A double-pole overcurrent devices and for all other overcurrent devices, and at least 2 additional spaces shall be left for future 120 V branch circuit overcurrent devices, and 2 additional spaces for future 240 V double-pole devices.”;
(5)  in Rule 8-200:
(a)  by replacing “the greater of Item (a) or (b)” in the part of Subrule (1) before Item (a) by “the greater of Item (a) or (b), and be increased to include the load provided for in Item (c) in the case of a single dwelling referred to in that Item”;
(b)  by replacing Items (vi) and (vii) of Subrule (1)(a) by the following:
“(vi) any loads provided for in addition to those outlined in Items (i) to (v) at 25% of the rating of each load with a rating in excess of 1,500 W if an electric range has been provided for, or 100% of the rating of each load up to a total of 6,000 W, plus 25% of the load in excess of 6,000 W if an electric range has not been provided for; or”;
(c)  in Subrule (1), by adding the following after Item (b):
(c) in the case of a single dwelling with a garage, a carport or a parking area, a load provided for the supply of electric vehicle supply equipment, according to the following cases:
i.  35% of the power rating of the first supply equipment and 70% of the power rating of the second, if an electric range and electric water heater have been provided for and in addition the electric space-heating load does not come from a central unit and is at least 14 kW;
ii.  70% of the power rating of the first supply equipment and 80% of the power rating of the second, if an electric range and electric water heater have been provided for and the electric space-heating load does not come from a central unit and is less than 14 kW; or
iii.  90% of the power rating per supply equipment in the cases not covered by Items (i) and (ii).”;
(d)  by adding the following after Rule 8-200(3):
“(4) For the purposes of this Rule, it is prohibited to use, to calculate the minimum ampacity of service or feeder conductors for a single dwelling with a garage, carport, or parking area, the relaxations provided for in Rule 8-106 (1) and in Table 39.”;
(6)  in Rule 8-202:
(a)  by adding the following after Subrule (1)(a)(vii)(B):
“(C) Notwithstanding Items (A) and (B), in the case of a load for the supply of electric vehicle supply equipment, that load shall be calculated in accordance with the method provided for in Rule 8-200(1)(c); or”;
(b)  by replacing Subrule (3)(e) by the following:
(e) in addition, any lighting, heating, and power loads not located in dwelling units shall be added to the preceding loads, by using a demand factor of 75%, except automobile heater receptacles included in the basic load of each dwelling.”;
(7)  by replacing Rule 8-204(1)(c) by the following:
(c) electric space-heating, air-conditioning, and total loads of other permanently connected equipment based on the rating of the equipment installed, subject to Rule 8-106(4); plus”;
(8)  by replacing Rule 8-206(1)(c) by the following:
(c) electric space-heating, air-conditioning, and total loads of other permanently connected equipment based on the rating of the equipment installed, subject to Rule 8-106(4); plus”;
(9)  by replacing Rule 8-208(1)(c) by the following:
(c) electric space-heating, air-conditioning, and total loads of other permanently connected equipment based on the rating of the equipment installed, subject to Rule 8-106(4); plus”;
(10)  in Rule 8-400:
(a)  by replacing Subrule (1) by the following:
“(1) In the application of this Rule, the following definition shall apply:
Controlled — supply to the receptacle is cycled by other than a manual operation.”;
(b)  by replacing Subrules (3) to (5) by the following:
“(3) Service or feeder conductors shall be considered to have a basic load of
(a) 1,300 W for each of the first 30 duplex receptacles;
(b) 1,100 W for each of the next 30 duplex receptacles; and
(c) 900 W for each additional duplex receptacle.
(4) If the load is controlled, the ampacity of the service or feeder conductors shall:
(a) be determined in accordance with Subrule (3), considering only the maximum number of duplex receptacles that can be supplied simultaneously; or
(b) not be lower than 125% of the rating of the load controller.
(5) For the purposes of Subrules (3) and (4), 2 single receptacles shall be considered to be one duplex receptacle.”;
(6)  In Section 10:
(1)  by adding the following in Rule 10-802:
“(3) Copper-clad aluminum is prohibited.”;
(2)  by replacing Rule 10-812 by the following:
10-812 Grounding conductor size for ac systems and for service equipment (see Appendix B)
(1)  Subject to Subrule (2), the copper grounding conductor size connected to a grounding electrode shall not be less than No. 6 AWG.
(2)  The copper grounding conductor size connected to water distribution metal piping shall be determined according to the ampacity of the largest ungrounded conductor in the circuit or the equivalent for multi-conductors and shall be sized not smaller than
(a)  No. 6 AWG for an ampacity of 250 A or less;
(b)  No. 3 AWG for an ampacity of 251 A to 500 A;
(c)  No. 0 AWG for an ampacity of 501 A to 1000 A; and
(d)  No. 00 AWG for an ampacity of 1001 A or more.
(3)  If a material other than copper is used for a grounding conductor, the material shall have a conductivity equivalent to what is required in Subrule (1) or (2).”;
(7)  in Section 12:
(1)  by replacing Rule 12-012(8) by the following:
“(8) Raceways shall be permitted to be installed directly beneath a concrete slab at grade level, provided that the concrete slab is not less than a nominal 100 mm in thickness, the location is adequately marked, and the raceway will not be subject to damage.”;
(2)  by adding the following after Rule 12-020:
12-022 Wiring under the metal deck of a roof
Except for rigid metal conduits, no wiring shall be installed less than 38 mm from the underside of the metal deck of a roof.”;
(3)  by replacing Rules 12-108(2) and (3) by the following:
“(2) Notwithstanding Subrule (1)(a), a single splice per conductor shall be permitted if a transition between conductors is necessary to compensate for the maximum voltage drop provided for in Rule 8-102, provided that it is spliced in the same manner, and that
(a) in the case of an overhead installation, the splice is thermit-welded or made by means of a compression connector applied with a compression tool compatible with the particular connector; or
(b) in the case of an underground installation, the splice complies with the conditions set out in Rule 12-112(5)(a) or (b).
(3) Notwithstanding Item (1)(f), conductors of one phase, polarity, or grounded circuit conductor shall not be required to have the same exact length as those of another phase, polarity, or grounded circuit conductor.”;
(4)  by adding the following Subrule at the end of Rule 12-116:
“(5) Cutting or adding strands or altering conductors in any other way to connect them to terminal parts, lugs or other junctions is prohibited.”;
(5)  by replacing Rule 12-312 by the following:
12-312 Conductors over buildings
Only conductors entering a building shall be permitted to run over the building.”;
(6)  by adding the following Subrule at the end of Rule 12-510:
“(5) Except in the locations provided for the installation of cupboards or counters, non-metallic-sheathed cables concealed in the inside walls of a dwelling unit that are located 1 to 2 m from the floor shall
(a)  be installed in a completely vertical manner;
(b)  have their outer surface located more than 32 mm from the hidden edge of the finishing element; or
(c)  be effectively protected from mechanical damage from driven nails or screws.”;
(7)  by replacing Rule 12-516 by the following:
12-516 Protection for non-metallic-sheathed cable in concealed installations (see Appendix G)
(1)  The outer surfaces of non-metallic-sheathed cables shall be kept a distance of at least 32 mm from the edges of the members intended to be used as support for sheathing or cladding, or the cable shall be effectively protected from mechanical damage.
(2)  Where non-metallic-sheathed cables pass through a metal member, they shall be protected by an insert approved for the purpose and adequately secured in place.
(3)  Where non-metallic-sheathed cables are installed behind a baseboard, moulding or other similar finishing element, their outer surfaces shall be kept a distance of at least 32 mm from the hidden edge of the element, or they shall be effectively protected from mechanical damage from driven nails or screws.”;
(8)  by adding the following Subrule at the end of Rule 12-616:
“(3) The installation of armoured cable in a concealed space in a metal element constituting the roof deck of a building or structure is prohibited.”;
(9)  in Rule 12-904:
(a)  by replacing Subrule (1) by the following:
“(1) Except for single-conductors installed in non-metallic raceways, all conductors of a circuit shall be contained in the same raceway, or in the same channel of a multiple-channel raceway except that, where it is necessary to run conductors in parallel due to the capacity of an ac circuit, additional raceways shall be permitted to be used, provided that
(a)  the conductors are installed in accordance with Rule 12-108(1);
(b)  each raceway includes an equal number of conductors from each phase, including the neutral conductor and the bonding conductor, if required; and
(c)  each raceway or cable sheath is of the same material and has the same physical characteristics.”;
(b)  by striking out “Except for cable tray,” at the beginning of Subrule (2);
(10)  by striking out “either during installation or afterwards” in Rule 12-1106;
(11)  by striking out Rule 12-1204;
(12)  by striking out “either during installation or afterwards” in Rule 12-1404(a);
(13)  by striking out Rule 12-1718(2);
(14)  by replacing Rule 12-2200(7) and (8) by the following:
“(7) At least one expansion joint shall be installed in any cable tray run where the expansion of the cable tray due to the maximum probable temperature change could damage the cable tray.”;
(15)  by replacing Rule 12-2208 by the following:
12-2208 Provisions for bonding
(1)  Where metal supports for metal cable trays are bolted to the tray and are in good electrical contact with the grounded structural metal frame of a building, the tray shall be deemed to be bonded to ground.
(2)  If Subrule (1) does not apply, metal cable tray shall be properly bonded at intervals not exceeding 15 m and the size of bonding conductors shall be based on the ampacity of the largest ungrounded conductor as specified in Rule 10-814 in the circuits carried by the cable tray.”;
(8)  in Section 14, by striking out Rule 14-104(2);
(9)  in Section 26:
(1)  by striking out Rule 26-354;
(2)  by striking out Rule 26-700(13);
(3)  in Rule 26-710:
(a)  by adding “and” at the end of Item (m);
(b)  by replacing “; and” at the end of Item (n) by “.”;
(c)  by striking out Item (o);
(4)  in Rule 26-712:
(a)  by replacing Items (iv) and (v) in Item (d) by the following:
“(iv) at least one receptacle (15 A split or 20 A T-slot) installed at each permanently fixed island counter space;
(v) at least one receptacle (15 A split or 20 A T-slot) installed at each peninsular counter space, except if the wall adjacent to the mating edge of the peninsula is equipped with a receptacle provided for in Item (iii); and”;
(b)  by replacing Item (g) by the following:
(g) all receptacles of CSA configuration 5-15R and 5-20R shall be tamper-resistant receptacles and shall be so marked.”;
(c)  by striking out Item (h);
(5)  by inserting “ground floor” before “single dwelling” in Item(a) of Rule 26-714;
(6)  in Rule 26-722:
(a)  by adding “and” at the end of Item (e);
(b)  by replacing “; and” at the end of Item (f) by “.”;
(c)  by striking out Item (g);
(7)  by replacing Rule 26-724(g) by the following:
(g) Notwithstanding Item (f), the entire branch circuit shall not be provided with arc-fault protection where
i.  an outlet branch-circuit-type arc-fault circuit interrupter is installed at the first outlet on the branch circuit; and
ii.  the wiring method for the portion of the branch circuit between the branch circuit overcurrent device and the first outlet consists of metal raceway or an armoured cable;
(h) notwithstanding Rule 8-304, the number of outlets installed on a branch circuit provided with arc-fault protection shall not exceed 10.”;
(10)  in Section 28:
(1)  by adding the following Subrule at the end of Rule 28-204:
“(5) Where a feeder supplies electric equipment, such as a splitter, motor control centre, switchgear or switchboard, it is permitted that the overcurrent protection that supplies the feeder be determined according to the value of the rating of the circuit, provided that it does not exceed the value of the rating indicated on that equipment, unless Rule 14-104 authorizes it.”;
(2)  by replacing Items (a), (b) and (c) of Rule 28-604(4) by the following:
(a) it is capable of safely making and interrupting the locked rotor current of the connected load; and
(b) it is capable of being locked in the open position.”;
(11)  in Section 30:
(1)  by replacing Rule 30-308(4) by the following:
“(4) Each fluorescent luminaire installed in a branch circuit exceeding 150 volts-to-ground shall
(a)  include a disconnecting means integrated into the luminaire, that cuts simultaneously all the circuit conductors between the branch circuit conductors and the ballast supply conductors; and
(b)  bear a conspicuous, legible, and permanent marking adjacent to the disconnecting means, identifying the intended purpose.”;
(2)  by replacing item (b) of Rule 30-320(3) by the following:
(b) if the requirement of Item (a) cannot be complied with, be protected by a Class A ground fault circuit interrupter and be installed inside the room without being located within the perimeter of the bath or shower.”;
(3)  by striking out Rules 30-500 to 30-510.
(12)  in Section 32:
(1)  by replacing the title of Section 32 by the following:
Fire pumps”;
(2)  by replacing Rule 32-000(1) by the following:
“(1) This Section applies to the installation of fire pumps required by Chapter I Building of the Construction Code (chapter B-1.1, r. 2).”;
(3)  by striking out Rules 32-100 to 32-110;
(4)  by replacing Rule 32-206 by the following:
32-206 Disconnecting means and overcurrent protection (see Appendices B and G)
(1)  It shall be permitted to install immediately downstream of the service box the disconnecting means and associated overcurrent protection device permitted in Chapter I Building of the Construction Code (chapter B-1.1, r. 2) and capable of interrupting the circuit of the fire pump.
(2)  It shall be permitted to install downstream of the service box of the normal supply circuit, regardless of the presence or not of the disconnecting means referred to in Subrule (1), an unfused switch lockable in the OFF position and labelled in a conspicuous, legible, and permanent manner, identifying it as the fire pump disconnecting means.
(3)  The unfused switch referred to in Subrule (2) shall
(a)  be capable of safely making and interrupting the locked rotor current of the connected load;
(b)  comply with the requirements of the supply authority;
(c)  bear a marking indicating the need to maintain it at all times in the ON position to ensure functionality of the fire pump; and
(d)  be equipped with at least one of the activation supervision devices permitted under Chapter I Building of the Construction Code (chapter B-1.1, r. 2), to signal the provisional deactivation of the fire pump.”.
(13)  by striking out Section 38 — Elevators, dumbwaiters, material lifts, escalators, moving walks, lifts for persons with physical disabilities, and similar equipment;
(14)  in Section 44, by striking out Rule 44-100;
(15)  in Section 46:
(1)  by striking out Rule 46-102(2);
(2)  by adding the following Subrule to Rule 46-108:
“(6) Notwithstanding Subrules (4) and (5), it shall be permitted to provide power to new life safety system loads, provided that they are
(a)  located in the same building and supplied from a panelboard put into place before 1 March 2011 in that same building; or
(b)  supplied from a new panelboard, located in a new part of the building, provided that the panelboard is supplied by a single feeder from a panelboard put into place before 1 March 2011.”;
(3)  by replacing Rule 46-202(3) by the following:
“(3) Where a generator is used, it shall be
(a)  of sufficient capacity to carry the load; and
(b)  arranged to start automatically without failure and without undue delay upon the failure of the normal power supply to any transfer switch connected to the generator.”;
(4)  by striking out Rule 46-204;
(16)  by striking out Section 54 — Community antenna distribution and radio and televisions installations;
(17)  by striking out Section 58 — Passenger ropeways and similar equipment;
(18)  in Section 60:
(1)  by striking out Rule 60-108;
(2)  by striking out Rules 60-500 to 60-510;
(3)  by striking out Rules 60-600 to 60-604;
(19)  in Section 62:
(1)  by inserting the following definition in Rule 62-104 in alphabetical order:
Wire mesh heating system — any heating system that uses concrete-embedded wire mesh as a heating element.”;
(2)  by striking out Rule 62-108(4);
(3)  by inserting “Except for branch circuits supplying water heaters, ” at the beginning of Rule 62-114(7);
(4)  by adding the following heading and Rules at the end of Section 62:
Wire mesh heating systems
62-500 Wire mesh heating systems
Rules 62-502 to 62-506 apply to the supply and connection of wire mesh embedded in a concrete slab or concrete wall for heating, from the point of emergence of the wire mesh at the slab level. However, those rules do not apply to the wire mesh or to the part of busbars embedded in concrete.
62-502 Use
(1)  Connection of wire mesh to the electrical supply if the wire mesh is installed in shower rooms, in or around swimming pools or in other locations involving similar hazards, is prohibited.
(2)  If a wire mesh heating system produces electrical currents in metallic parts other than the mesh, the mesh shall be supplied only if the currents have been eliminated.
62-504 Other conductors and outlets in a heated slab
(1)  Any other conductor shall be located at least 50 mm from the wire mesh and busbars and shall be considered to operate at an ambient temperature of 40 °C.
(2)  Any outlet to which a lighting fixture or other heat-producing equipment is likely to be connected shall be located at least 200 mm from the wire mesh.
62-506 Transformers for wire mesh heating systems
(1)  Transformers supplying wire mesh heating systems shall have a grounded electrostatic shield between the primary and secondary windings.
(2)  The secondary voltage of a transformer supplying a wire mesh heating system shall not exceed 30 V measured on the secondary side of a single-phase transformer or between 2 phases on the secondary side of a three-phase transformer.
(3)  The conductors connected to the secondary side of a transformer supplying a wire mesh heating system do not require overcurrent protection.”;
(20)  by striking out Section 64 — Renewable energy systems;
(21)  in Section 66:
(1)  by replacing Rule 66-000(2) and (3) by the following:
“(2) The requirements of this Section supplement or amend the general requirements of this Code.”;
(2)  by adding the following heading and Rules at the end of Section 66:
Itinerant rides
66-600 Bonding
Notwithstanding Rules 66-200 and 66-202, an itinerant ride shall be permitted to be bonded to ground by one of the following means:
(a)  a loop-shaped copper conductor at least equal in size to that specified in Table 16 A, but not less than No. 6 AWG, installed so as to form a loop around the ride or around the group of rides connected to the supply system of those rides; the ends of the loop shall be connected to a copper busbar whose terminals are connected to the grounded neutral conductor of the supply system. The non-current-carrying metal parts of the supply system and of the rides connected to the system shall be connected to the loop-shaped conductor by means of a copper conductor at least equal in size to that specified in Table 16 A, but not less than No. 6 AWG; or
(b)  an insulated copper conductor, attached to the supply cable, at least equal in size to that specified in Table 16 A, but not less than No. 6 AWG.
66-602 Splitter
An itinerant ride shall be permitted to be connected to the supply system by means of a movable splitter provided that the splitter is waterproof and dustproof and is raised at least 25 mm from the surface on which it is installed.
66-604 Bare live parts
The cover of a box containing live parts shall be screwed shut or key-locked. Failing that, the box shall be inaccessible to the public.
66-606 Supply
A receptacle used to supply an amusement ride shall be of the locking type or the equivalent. In addition, a receptacle that does not ensure the simultaneous disconnecting of all conductors shall be inaccessible to the public.”;
(3)  by replacing Rule 68-304 by the following:
68-304 Control
The electric controls of a hydromassage bathtub shall
(a)  be located in the room where the bathtub is; and
(b)  unless the controls are an integral part of an approved factory-built hydromassage bathtub, be equipped with an on-off switch located behind a barrier or not less than 1 m horizontally from the wall of the bathtub.”;
(22)  in Section 72, by adding the following Subrules at the end of Rule 72-110:
“(5) Each recreational vehicle lot equipped with sewers shall be provided with at least one receptacle of each type described in Subrule (1)(a) or (b) and (1)(c).
(6) Each recreational vehicle lot equipped with only one water outlet shall be provided with one receptacle of the type described in Subrule (1)(a) or (b).”;
(23)  in Section 76:
(1)  in Rule 76-014 by replacing “except by special permission” by “unless an appropriate warning is displayed at all the points of interconnection or other dangerous areas”;
(2)  in Rule 76-016 by replacing “having CSA configuration 5-15R or 5-20R” by “of 15 A and 20 A to 125 V”;
(24)  in Section 86 by inserting the following Rule after Rule 86-200:
86-202 Branch circuits for single dwellings
(1)  For each new single dwelling equipped with a garage, a carport or a parking area, a conduit or cable shall be installed in anticipation of a separate branch circuit dedicated to supply electric vehicle supply equipment, in accordance with Section 12.
(2)  The installation provided for in Subrule (1) shall be capable of supplying a circuit of a minimum capacity of 40 A.
(3)  The installation provided for in Subrule (1) shall come from a panelboard and end in an outlet box approved for the location and intended to receive a receptacle conforming to CSA configuration 6-50R, 14-50R, L6-50R or L14-50R, located in the garage, in the carport or near the parking area of the single dwelling.”;
(25)  in Table 1, by replacing the allowable ampacities in the first three rows and in columns 2 (60 °C), 3 (75 °C) and 4 (90 °C) by the following:
“ 202020
    252525
    404040  ”;
(26)  in Table 2, by replacing the allowable ampacities in the first three rows and in columns 2 (60 °C), 3 (75 °C) and 4 (90 °C) by the following:
“ 151515
     202020
     303030  ”;
(27)  in Table 3, by replacing the allowable ampacities in the first three rows and in columns 2 (60 °C), 3 (75 °C) and 4 (90 °C) by the following:
“ 202020
     303030
     454545 ”;
(28)  in Table 4, by replacing the allowable ampacities in the first three rows and in columns 2 (60 °C), 3 (75 °C) and 4 (90 °C) by the following:
“ 151515
     252525
     303030 ”;
(29)  by striking out Table 68;
(30)  by adding the following after Table 68:
Table 69
Minimum size of each neutral conductor for underground consumer’s services of more than 600 A supplied by conductors in parallel
[See Rule 4-024 (5).]
Rating of the service box ASize of each copper neutral conductor, AWGSize of each aluminium neutral conductor, AWG
601 to 1,2000000
1,201 to 2,000000000
2,001 and more000250 kcmil
  ”;
(31)  in Appendix B:
(1)  in Section 0, by inserting the following Note in alphabetical order:
Electrical installation
From the definition of “electrical installation”, it is understood that installations, from the connecting point where the supply authority supplies the customer or from any other supply, to the connection point where the equipment receives its power to function, are electrical installations as defined in the Code. “Electrical installation” therefore means the infrastructure used to direct the electrical current to equipment requiring the current to function (appliance, equipment, specialized system) but not such equipment. The following systems in particular are not electrical installations as defined in the Code: intercommunication systems, public address systems, synchronized clock systems, visual, sound, or voice signalling systems, telephony systems, their interconnection to the telephone network, closed circuit television systems, access cards, community antennae, instrumentation and regulation systems related to heating, air conditioning, air venting and industrial processes, burglar alarm systems, fire alarm systems, and the metering equipment of the supply authority.
”;
(2)  in Section 2, by striking out the Note concerning Rule 2-026;
(3)  in Section 2, by replacing the Note to Rule 2-324 by the following:
Rule 2-324
Flowmeters are not considered to be devices equipped with a vent or relief discharge for combustible gas.
The prescribed distances are measured from the combustible gas relief device and not from the appliance. An appliance may be located near arc-producing equipment provided that an airtight conduit conveys the exhaust gas beyond the prescribed distances.”;
(4)  in Section 2, by adding the following Note after the Note to Rule 2-400:
Rule 2-500
The intent of this Rule is to limit as much as possible the mixing of circuits of one building with those of another so as to ensure the safety of occupants, particularly in cases of emergency or maintenance work.”;
(5)  in Section 4, by striking out the Note to Rule 4-006;
(6)  in Section 4, by striking out the Note to Rule 4-006(4) and (5);
(7)  in Section 6, by replacing “that does not exceed 200 A and 750 V, and whose supply service span length is 30 m or less,” in the Note to Rule 6-112(4) by “that does not exceed 750 V”;
(8)  in Section 6, by inserting the following after the Note to Rule 6-206(2):
Rule 6-300(1)(b)(ii)(B)
The joints and splices should be installed
(a)  in a junction box adequately protected from mechanical damage, located at least 1 m above the ground and attached to a building or post; or
(b)  with devices or material specifically approved to make underground joints and splices.
The compatibility of the conductors’ material with the material of the devices used to make the joints and splices should be ensured.
Special care should be given to the location of those joints and splices to limit as much as possible the length of the shortest conductors. All the precautions necessary should also be taken regarding a possible movement of the soil (in particular frost), as specified in Rule 12-012(12).
Rule 6-310(c)
See the Note to Rule 6-300(1)(b)(ii)(B).”;
(9)  in Section 8, by striking out the Note to Rule 8-002;
(10)  in Section 8, by striking out the Note to Rule 8-102(3);
(11)  in Section 8, by striking out the Note to Rule 8-106(10);
(12)  in Section 10, by replacing the Note to Rule 10-802 by the following:
Rule 10-802
Although copper is the most common material used to manufacture grounding conductors, other materials may also be used, such as aluminium, copper-clad steel, steel-clad copper, or steel-clad aluminium. For that purpose, copper-clad aluminium is not accepted. Where materials other than copper are used, precautions should be taken, both at the terminations and all along the route as well. Most of the grounding electrical equipment available on the market is compatible with copper only. Different solutions exist to make the materials compatible with the terminations. Thermit-welding or approved adaptors are used the most.
Even if adaptors are used at the terminations to ensure longevity, documentation confirming the suitability of the material may be required, especially if there is a risk that the conductor made from a material other than copper could come into contact with dissimilar metals along its route. Subrule (2), as well as Rules 2-112 and 10-602, require that consideration be given to materials subject to galvanic action or corrosion. For instance, copper conductors in contact with aluminium are subject to galvanic action. Building covering materials and aluminium conductors in contact with masonry or earth are also subject to corrosion. Precautions should be taken at all times to ensure that deterioration from corrosion or galvanic action will be avoided all along the route. The durability of the grounding, which is essential, must be ensured at all times.”;
(13)  in Section 12, by inserting the following after the Note to Rule 12-108:
Rule 12-108(2)(b)
See the Note to Rule 6-300(1)(b)(ii) (B).”;
(14)  in Section 26, by striking out the Note to Rules 26-700(13) and 26-712(h);
(15)  in Section 26, by inserting the following after the Note to Rule 26-704:
Rule 26-710(e)(iv)
It is understood from the expression unfinished that even after the installation of the wall covering (gypsum, etc.), it may be impossible to find the appropriate location for the installation of the receptacles required by Rule 26-712(a) if partitions and usable wall space have not yet been delimited. A basement is not considered to be a “finished basement” if the foundation walls are finished but the ceiling is not finished or is partly finished. However, the installation of a duplex receptacle required under Rule 26-710(e)(iv) does not remove the requirement to install the receptacles for specific use already required by other rules of the Code.”;
(16)  in Section 26, by striking out the Note to Rule 26-710(o);
(17)  in Section 26, by striking out the Note to Items (iv) and (v) of Item (d) of Rule 26-712;
(18)  in Section 26, by striking out the Note to Rule 26-712(d)(v);
(19)  in Section 32, by replacing the Note to Rule 32-200 by the following:
Rule 32-200
The intent of this Rule is to select the size of the conductors so as not to compromise the integrity of their insulation when they are subject to a fault current (see Rule 32-206 and the associated Note in Appendix B).
The intent of this Rule is also to protect the feeder conductors between a fire pump and an emergency power source from fire damage.
Chapter I Building of the Construction Code (chapter B-1.1, r. 2) requires that conductors supplying life and fire safety equipment be protected against exposure to fire to ensure continued operation of this equipment for a period not less than 1 hour.
NFPA 20 also mandates protection of circuits feeding fire pumps against damage by fire.
Specific requirements pertaining to the fire resistance rating of a material or an assembly of materials can be found in Article 3.2.7.10 of Chapter I Building of the Construction Code (chapter B-1.1, r. 2) or in the appropriate municipal legislation.”;
(20)  in Section 32, by replacing the Note to Rule 32-206 by the following:
Rule 32-206
Through the requirements of Chapter I Building of the Construction Code (chapter B-1.1, r. 2) related to the installation of fire pumps (NFPA 20), the intent of this Rule is to allow only a circuit breaker lockable in the closed position and identified as the fire pump disconnecting means to be installed upstream from the fire pump controller in a normal power supply circuit, or upstream from the fire pump transfer switch in an emergency power supply circuit. In Québec, as in the Canadian Electrical Code, it is permitted that the disconnecting means capable of interrupting the circuit of the fire pump, where applicable, be installed immediately downstream of the service box (or equivalent), and not only upstream.
This Rule requires that a fire pump overcurrent protection device be set to enable uninterrupted operation under fire pump starting conditions. Such overcurrent protection devices are installed upstream from a fire pump controller or upstream from a fire pump transfer switch, and have that capability whether they form part of the normal power supply circuit or the emergency power supply circuit.
A typical locked rotor current for a fire pump is at least 500% of the full load current and fire pump suppliers should be consulted to determine the specific locked rotor current for the fire pump selected for a specific application. The setting of the overcurrent protection of the circuit breaker in a normal power supply circuit should be able to carry the locked rotor current of the fire pump indefinitely. The setting of the overcurrent protection of the circuit breaker in an emergency power supply circuit (generator) should be coordinated with the integral overcurrent protection of the fire pump controller or the transfer switch in such a manner that the upstream overcurrent protection devices do not disconnect the circuit prior to the operation of the fire pump controller or transfer switch overcurrent protection.
Chapter I Building of the Construction Code (chapter B-1.1, r. 2), through NFPA 20, allows the bypass of the main protection of the generator by a direct connection between the emergency power supply circuit and the fire pump transfer switch. That relaxation eliminates the requirements of coordination between the main protection of the generator and the protection of the fire pump circuit, as required by Rule 46-208(1).
It should also be noted that Chapter I Building of the Construction Code (chapter B-1.1, r. 2), through NFPA 20, requires that the fire pump controller or transfer switch protection have an instantaneous trip setting of not more than 20 times the full load current. NFPA 20 also requires that the fire pump controller or transfer switch protection carry a minimum of 300% of the fire pump full load current during 8 to 20 seconds.
Lastly, Subrule (2) allows the installation downstream of the service box (or equivalent) of the normal supply circuit, regardless of the presence or not of a disconnecting means referred to in Subrule (1), of an unfused switch between the service box (or equivalent) of the normal power supply circuit and a fire pump transfer switch or controller.
The activation supervision devices allowed under Chapter I Building of the Construction Code (chapter B-1.1, r. 2) (to signal the temporary deactivation of the fire pump) and referred to in Subrule (3)(d) are found in Article 9.2.3.3 of the 2010 edition of NFPA 20.”;
(21)  in Section 62, by striking out the Note to Rule 62-108(4);
(32)  by striking out Appendix L — Engineering guidelines for determining hazardous area classifications.
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
DIVISION IV
OFFENCES
O.C. 961-2002, s. 5; O.C. 722-2018, s. 1.
5.06. Any contravention of any provision of this Chapter, except Rule 2-008 introduced by subparagraph 4 of paragraph 2 of Rule 5.05 of this Chapter, constitutes an offence.
O.C. 722-2018, s. 1.
CHAPTER VII
PASSENGER ROPEWAYS
O.C. 895-2004, s. 2.
DIVISION I
INTERPRETATION
O.C. 895-2004, s. 2.
7.01. In this Chapter, unless the context indicates otherwise, “standard” means the standard “Remontées mécaniques, CAN/CSA Z98-01, Avril 2002” including the amendments in the standard “Z98S1-02 Supplément no 1 à la norme CAN/CSA-Z98-01 Remontées mécaniques, Février 2003” and the updates of July 2002 and October 2003 or “CSA Standard CAN/CSA Z98-01: Passenger Ropeways, June 2001” including the amendments in “Z98S1-02 Supplement No. 1 to CAN/CSA-Z98-01 Passenger Ropeways, December 2002” and the updates of July 2002 and October 2003, published by the Canadian Standards Association, as well as such subsequent amendments and editions as may be published by that organization.
However, the amendments and new editions published after the 21 October 2004 apply to construction work only from the date that corresponds to the last day of the sixth month following the month of publication of the French text of those amendments or editions.
O.C. 895-2004, s. 2.
DIVISION II
APPLICATION OF STANDARDS
O.C. 895-2004, s. 2.
7.02. Subject to the amendments provided for in Division V of this Chapter, the standards and provisions of this Chapter apply to all construction work on a passenger ropeway referred to in the standard and constituting facilities intended for use by the public designated by regulation made by the government under subparagraph 4 of the first paragraph of section 182 of the Building Act (chapter B-1.1) to which the Act applies, including its vicinity, and that is carried out from the 21 October 2004.
Despite this section, for construction work other than maintenance, repair or demolition work, for which contracts were signed before 21 October 2004, a contractor may meet the requirements of either the Regulation respecting the application of a safety code for elevators and a standard for lifts for persons with physical disabilities (O.C. 111-97, 97-01-29) or the Regulation respecting passenger ropeways (O.C. 2476-82, 82-10-27) provided the construction work begins before 19 April 2005. (O.C. 895-2004, s. 3)
O.C. 895-2004, s. 2.
DIVISION II.1
REFERENCES
O.C. 1419-2021, s. 3.
7.02.01. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 1419-2021, s. 3.
DIVISION III
PLANS AND SPECIFICATIONS
O.C. 895-2004, s. 2.
7.03. A contractor or owner-builder may not begin construction work, except maintenance, repair or demolition work on a passenger ropeway to which Chapter VII of the Construction Code applies, unless the plans and specifications have been prepared for the work.
The plans shall be drawn to scale and shall, with the specifications, indicate the nature and scope of the work to establish if the work carried out complies with section 7.02.
The plans and specifications must contain information on the following:
(1)  towers;
(2)  upper and lower stations;
(3)  sheaves and sheave assemblies;
(4)  counterweight sheaves;
(5)  deropement equipment and switches;
(6)  main drive;
(7)  rope grips;
(8)  hangers and spring boxes;
(9)  hangers and chairs, or cars, or cabins;
(10)  brakes and backstops;
(11)  tensioning systems and details;
(12)  foundations of all structures;
(13)  electric power and lightning protection;
(14)  electric controls and safety schematics;
(15)  communication systems;
(16)  hydraulic schematic systems;
(17)  haul and counterweight rope details;
(18)  structures or buildings;
(19)  evacuation equipment (seats, ropes);
(20)  service and inspection platforms;
(21)  ramps; and
(22)  elevation plan.
O.C. 895-2004, s. 2.
DIVISION IV
CERTIFICATE OF CONFORMITY
O.C. 895-2004, s. 2.
7.04. A contractor or owner-builder shall, after construction work, except maintenance, repair or demolition work on a passenger ropeway, provide the Régie du bâtiment du Québec with a certificate of conformity with this Chapter produced and signed by a recognized person stating that
(1)  the passenger ropeway is installed in accordance with this Chapter;
(2)  the tests and inspections that are provided for the passenger ropeway have been performed and their results are satisfactory; and
(3)  the information required from the manufacturer pursuant to the standard has been provided by the latter.
The certificate shall also specify the components inspected, the means used and the data used as the basis for drawing up the certificate, the type, trademark, model, address of the site where the construction work on the passenger ropeway was performed, the nature of the work, the date of the tests and inspections and the name and title of the person by whom they were performed, the date of signature, name, address and telephone number of the engineer who produced the certificate and the date of completion of the construction work. The certificate of conformity may be made on the form provided for that purpose by the Board.
O.C. 895-2004, s. 2.
7.05. An engineer who is a member of the Ordre des ingénieurs du Québec, or the holder of a temporary licence issued under the Engineers Act (chapter I-9), whose professional activities are related to the field of elevators or other elevating devices, is a person recognized for producing and signing the certificate of conformity required under section 7.04.
O.C. 895-2004, s. 2.
7.06. A person is no longer recognized when the person ceases to be a member of the Ordre des ingénieurs du Québec or is no longer the holder of a temporary licence.
O.C. 895-2004, s. 2.
DIVISION V
AMENDMENTS TO THE STANDARD
O.C. 895-2004, s. 2.
7.07. Standard CSA Z98-01 is amended
(1)  by revoking Clause 1.5;
(2)  by replacing Clause 1.6 by the following:
1.6. For the purposes of this standard, a self-powered reversible above-surface ropeway means a passenger ropeway.”;
(3)  by replacing “The owner” in Clause 11.25.3 by “The owner or owner-builder”;
(4)  by replacing “It shall be the responsibility of the owner to ensure that the following conditions have been met:” in Clause 11.25.4 by “The owner or owner-builder shall ensure that the following conditions have been met:”.
O.C. 895-2004, s. 2.
DIVISION VI
PENAL
O.C. 895-2004, s. 2.
7.08. Any contravention of any of the provisions of this Chapter constitutes an offence.
O.C. 895-2004, s. 2.
CHAPTER VIII
PETROLEUM EQUIPMENT INSTALLATION
O.C. 220-2007, s. 1.
DIVISION I
DEFINITIONS
O.C. 220-2007, s. 1; O.C. 87-2018, s. 1.
8.01. In this Chapter, unless the context indicates otherwise,
airport outlet means a motor fuel dispensing outlet where aviation fuel is dispensed to an aircraft; (poste d’aéroport)
booth means a shelter situated within a dispensing area, to be used for the sale of motor fuel and, where applicable, for controlling motor fuel dispensing equipment; (kiosque)
bulk plant means a facility for the storage of bulk petroleum products and having a tank truck, tank car or a cargo tank trailer loading facility; (dépôt)
designated location means a quarry, mine, forest operations site, agricultural establishment, construction site, snowmobile stop, hunting or fishing camp, or a location not accessible year round by a practicable road in the Québec highway network; (endroit désigné)
first storey means the highest storey having its floor not more than 2 m above average ground level; (premier étage)
flash point means the minimum temperature at which a liquid within a container gives off vapour in sufficient concentration to form an ignitable mixture with air near the surface of the liquid; (point d’éclair)
high-risk petroleum equipment means petroleum equipment having one of the following characteristics:
(1)  petroleum equipment, one or more components of which is partially or completely buried, having a capacity of
(a)  500 or more litres, when it is installed to store motor fuel; or
(b)  4,000 or more litres, when it is installed to store heating fuel oil, except petroleum equipment of less than 10,000 litres used for heating a single-family dwelling;
(2)  aboveground petroleum equipment that has a capacity of 2,500 or more litres, if it is installed to store Class 1 fuel;
(3)  petroleum equipment that has a capacity of 10,000 or more litres, if it is installed to store a petroleum product;
(4)  petroleum equipment installed for the purposes of trade in petroleum products;
(5)  petroleum equipment that is a pipeline.
For the purposes of subparagraph 1, 2 or 3, the capacity of petroleum equipment that is joined, connected to or used with other petroleum equipment, both intended for a common purpose, is determined by combining their respective capacities; (équipement pétrolier à risque élevé)
lower explosive limit means the minimum concentration of vapour in air at which the propagation of flame occurs on contact with an ignition source; (limite inférieure d’explosivité)
marina outlet means a motor fuel dispensing outlet where motor fuel is dispensed to motorized vessels; (poste de marina)
motor fuel dispensing outlet means a self-serve facility, an unattended self-serve facility, an airport outlet, a user outlet, a marina outlet and a service station; (poste de distribution de carburant)
petroleum equipment means any container, piping, apparatus or other equipment or device that may be used for the distribution, handling, transfer or storage of petroleum products, or forming part of a petroleum equipment installation; (équipement pétrolier)
pipeline means an intra-provincial structure in which a petroleum product is transported, including the pipes, the components and the other related apparatus that are connected to the pipes as well as the isolation valves used in the stations and other installations marking the beginning and end of that infrastructure. This definition excludes the tank and piping connected to the tank and the piping directly connected to a marine wharf; (canalisation)
recognized person means a person able to produce or furnish a certificate of conformity pursuant to sections 16 and 35 of the Building Act (chapter B-1.1); (personne reconnue)
self-serve facility means a motor fuel dispensing outlet where motor fuel is dispensed to a vehicle under the supervision of an attendant; (libre-service avec surveillance)
service centre means a site where the fuel system of an internal combustion engine is serviced; (atelier de mécanique)
storey means that part of a building between the top of a floor and the top of the next floor above it, or if there is no floor above it, that part between the top of a floor and the ceiling; (étage)
tank means a container that holds more than 225 litres; (réservoir)
unattended self-serve facility means a motor fuel dispensing outlet for commercial vehicles where motor fuel is dispensed to a vehicle without supervision of an attendant; (libre-service sans surveillance)
underground piping means piping or part of piping that is buried in the ground; (tuyauterie souterraine)
underground tank means a tank that is partially or entirely buried in the ground; (réservoir souterrain)
user outlet means a motor fuel dispensing outlet used for a purpose other than trade in motor fuel. (poste d’utilisateur)
O.C. 220-2007, s. 1; O.C. 87-2018, s. 2.
8.02. For the purposes of this Chapter,
(1)  the words and expressions used in the definition of petroleum product provided for in the Building Act (chapter B-1.1) have the meaning assigned to them by the Petroleum Products Regulation (chapter P-30.01, r. 2). In addition, the term gasoline includes the blendstock for oxygenate blending and the term fuel includes diesel fuel intended to serve as fuel in locomotive and ship engines;
(2)  the definition of petroleum product provided for in the Building Act (chapter B-1.1) includes any other liquid mixture of hydrocarbons referred to in the Petroleum Products Regulation (chapter P-30.01, r. 2);
(3)  petroleum products comprise the following classes:
(a)  Class 1: liquid having a flash point below 37.8 °C determined according to the method provided by ASTM D56, Standard Test Method for Flash Point by Tag Closed Cup Tester, published by the American Society for Testing and Materials International;
(b)  Class 2: liquid having a flash point equal to or above 37.8 °C but below 60 °C determined according to the method provided by ASTM D93, Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, published by the American Society for Testing and Materials International;
(c)  Class 3: liquid having a flash point equal to or above 60 °C determined according to the method provided by ASTM D93, Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, published by the American Society for Testing and Materials International.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 3.
DIVISION II
SCOPE
O.C. 220-2007, s. 1; O.C. 87-2018, s. 4.
8.03. This Chapter applies to construction work on a petroleum equipment installation, including its vicinity.
It does not apply to equipment or apparatus intended to use a petroleum product, such as an internal combustion engine or fuel burning equipment.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 4.
DIVISION III
REGULATIONS AND TECHNICAL STANDARDS APPLICABLE DEPENDING ON THE TYPE OF WORK
O.C. 220-2007, s. 1; O.C. 87-2018, s. 5.
8.04. In this Chapter, a reference to a regulation, or a technical standard developed by a body other than the Board, refers to the most recent regulation, or the most recent edition of the technical standard and includes any amendments to that edition.
However, the amendments and editions of the technical standards published after 7 April 2018 apply to petroleum equipment only from the last day of the sixth month following the publication of the French and English versions of those texts. Where those versions are not published at the same time, the period runs from the date of publication of the last version. If the amendments or editions are in one language, the period runs from their publication.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 6.
8.05. Where the referenced requirements are inconsistent with the requirements of any provision of this Chapter, the latter prevail.
O.C. 220-2007, s. 1.
8.05.01. Construction work on a petroleum equipment installation must be carried out in accordance with this Chapter, except for
(1)  construction work of a petroleum equipment installation covered by CSA Standard B139, Installation code for oil-burning equipment, published by the CSA Group, which must be carried out in accordance with that standard, and with sections 8.08 to 8.22 of this Chapter;
(2)  construction work on a petroleum equipment installation located inside a building and not referred to in subparagraph 1, which must be carried out in accordance with Part 4 of Division B of the NFCC, National Fire Code of Canada, published by the Canadian Commission on Building and Fire Codes of the National Research Council of Canada, and with sections 8.08 to 8.22 and with the applicable provisions of Divisions VIII and IX of this Chapter;
(3)  construction work of a pipeline, which must be carried out in accordance with CAN/CSA Standard Z662, Oil and Gas Pipeline Systems, published by the CSA Group, and with sections 8.08 to 8.22 of this Chapter.
Sections 8.01 to 8.05 and 8.218 of this Chapter apply to the work referred to in subparagraphs 1 to 3 of the first paragraph.
O.C. 87-2018, s. 7.
8.06. The technical standards developed by another agency and referenced in this Chapter are those indicated in the table below.
TABLE 1
REFERENCED TECHNICAL STANDARDS DEVELOPED BY ANOTHER AGENCY
O.C. 220-2007, s. 1; O.C. 92-2014, s. 1; O.C. 87-2018, s. 8.
8.07. (Revoked).
O.C. 220-2007, s. 1; O.C. 1263-2012, s. 3; O.C. 92-2014, s. 2; O.C. 87-2018, s. 9.
DIVISION IV
APPROVAL OF EQUIPMENT
O.C. 220-2007, s. 1.
8.08. Petroleum equipment used in a petroleum equipment installation must, when required by a provision of this Chapter, be approved for the use for which it is intended.
A tank for which subparagraph 1 or 2 of the first paragraph of section 8.05.01 applies must also be approved for the use for which it is intended.
The sale or leasing of such equipment that has not been approved is prohibited. The use of such equipment in a petroleum equipment installation that has not been approved, except for approval purposes, is also prohibited.
Petroleum equipment may, however, during an exhibition, a presentation or a demonstration, be used without prior approval provided that it is accompanied by a notice with the following warning in characters measuring at least 15 mm: “WARNING: this material has not been approved for sale or rental as required under Chapter VIII of the Construction Code.”.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 10.
8.09. All petroleum equipment that has been certified by a certification agency accredited by the Standards Council of Canada in the field of petroleum equipment is considered to be approved.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 11.
8.10. Despite section 8.08, approval is not required for each component of petroleum equipment if the petroleum equipment has received overall approval.
O.C. 220-2007, s. 1.
8.11. For the purposes of this Chapter, certification or certified means recognition by one of the certification agencies accredited by the Standards Council of Canada in the field of petroleum equipment, by means of a label affixed on certified equipment, attesting that the equipment complies with the construction and testing requirements in the standards published by the agency.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 12.
DIVISION V
CERTIFICATE OF CONFORMITY
O.C. 220-2007, s. 1.
8.12. A contractor or owner-builder must, after construction work related to the installation, alteration or demolition of high-risk petroleum equipment or complete piping connected to it, provide the Régie du bâtiment du Québec with a certificate of conformity produced and signed by a recognized person under section 8.13 stating that
(1)  in the case of high-risk petroleum equipment covered by CSA Standard B139, Installation code for oil-burning equipment, published by the CSA Group, the work has been carried out in accordance with the requirements of that standard;
(2)  in the case of high-risk petroleum equipment located inside a building and not covered by subparagraph 1, the work has been carried out in accordance with the requirements of Part 4 of Division B of the NFC, National Fire Code of Canada, published by the Canadian Commission on Building and Fire Codes of the National Research Council Canada and the applicable provisions of Division VIII and IX of this Chapter;
(3)  in the case of a pipeline, the work has been carried out in accordance with the requirements of CAN/CSA Standard Z662, Oil and Pipeline Systems, published by the CSA Group;
(4)  in the case of high-risk petroleum equipment that is not referred to in subparagraphs 1 to 3, the work has been carried out in accordance with sections 8.23, 8.24, 8.26 to 8.28, paragraphs 1 to 3 of section 8.29, section 8.30, sections 8.31 and 8.32, only with regard to the clearance between the top of the tank and ground level, sections 8.42 to 8.44, paragraphs 1 and 2 of section 8.45, section 8.46, except subparagraphs 1 to 3 of the second paragraph, sections 8.48 to 8.50, paragraph 1 of section 8.51, sections 8.53, 8.55 to 8.57, 8.60 to 8.65, except paragraph 4 of that section, paragraph 2 of section 8.66, sections 8.69, 8.72, 8.75, 8.78 to 8.80 and section 8.83, only with regard to the clearance between the piping and ground level, sections 8.85, 8.88 to 8.95, the third paragraph of section 8.96, sections 8.97, 8.98, 8.100, 8.102, 8.108, subparagraph 1 of the first paragraph of section 8.110, the third paragraph of section 8.112, sections 8.116, 8.124, 8.125, 8.127, 8.128, 8.138, 8.141 to 8.147, 8.149 to 8.154, 8.156, 8.158 to 8.160, the first paragraph of section 8.162, section 8.164, the first and second paragraphs of section 8.166, sections 8.168, 8.170 to 8.172, 8.174, 8.175, the second paragraph of section 8.177, section 8.178, except paragraph 5 of that section, sections 8.179, 8.180, 8.182, 8.185, 8.186, 8.195 and 8.197 to 8.199, section 8.200, with regard to the manual valve, sections 8.201, 8.203 to 8.205, 8.207 to 8.209, 8.211 to 8.213 and 8.215 to 8.217;
(5)  the tests and verifications that are provided, as the case may be, in the standards referred to in subparagraphs 1 to 3 or the sections listed in subparagraph 4, for such work, have been performed and the results are satisfactory;
(6)  the equipment covered by the certificate is free of leaks and does not represent a danger to the public.
Should the recognized person refuse to file the required certificate of conformity, the recognized person informs the contractor or owner-builder and the Board, within 30 days, of the irregularities observe and of the reasons for refusal. 
The certificate must also contain a description of the petroleum equipment inspected, its type, make, the petroleum product it is to contain, its model, capacity, serial number, the standard under which it has been approved or manufactured, the address of the site where the construction work on the petroleum equipment was carried out, the nature of the work carried out, the licence number of the contractor or owner-builder who carried out the work, the date of signature, the name, address, telephone number and professional order membership number or the temporary permit issued under the Engineers Act (chapter I-9), of the recognized person who produced the certificate and the date of the beginning and end of the construction work. The certificate may be produced on the form provided for that purpose by the Board.
If high-risk petroleum equipment has already been installed, altered or demolished, the contractor or owner-builder must take the necessary measures so that the recognized person may produce the certificate.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 13.
8.13. The following persons whose professional activities are related to the inspection, surveillance or design of petroleum equipment installations may be recognized by the Board to produce and sign the certificate of conformity required under section 8.12:
(1)  an engineer who is a member of the Ordre des ingénieurs du Québec;
(2)  a holder of a temporary licence issued under the Engineers Act (chapter I-9) and
(3)  a professional technologist holding a licence issued by the Ordre des technologues professionnels du Québec.
Those persons must not be in a situation of conflict of interest, such as
(1)  performing work on petroleum equipment or decontamination work on sites polluted by petroleum products, or supervising such work, in the capacity of a contractor or employee; or
(2)  having a direct or indirect interest in an enterprise that performs work on petroleum equipment, designs or manufactures petroleum equipment or engages in activities in the field of petroleum product sales, storage or transportation.
O.C. 220-2007, s. 1; O.C. 838-2011, s. 1; O.C. 87-2018, s. 14.
8.14. The person referred to in section 8.13 who applies for recognition must
(1)  file an application with the Board that contains the following:
(a)  the person’s name, home address, telephone number and membership number of the person’s professional order or the person’s temporary licence number; and
(b)  the number of years of experience acquired in activities related to the fields referred to in section 8.13;
(2)  pay the fees of $643.62, unless the application concerns the third paragraph of section 8.13; and
(3)  certify the accuracy of the information contained in the application.
O.C. 220-2007, s. 1; O.C. 838-2011, s. 2.
8.15. The recognition of a person may be revoked by the Board for the following reasons:
(1)  the person no longer meets the conditions set out in section 8.13; or
(2)  the person has been convicted of an offence under section 194 of the Building Act (chapter B-1.1).
O.C. 220-2007, s. 1.
DIVISION VI
GENERAL
O.C. 220-2007, s. 1.
8.16. Construction work carried out on a petroleum equipment installation must be carried out so as to ensure that the equipment provides, in normal conditions of use and when used as intended, satisfactory levels of performance while minimizing danger to the public.
O.C. 220-2007, s. 1.
8.17. A contractor or owner-builder must, during construction work,
(1)  use construction procedures suitable for the work;
(2)  use the materials, appliances, equipment or devices designed for that purpose; and
(3)  take the necessary precautions to prevent a risk of explosion, fire, spillage or other accidents of that nature.
O.C. 220-2007, s. 1.
DIVISION VII
SPECIAL PROVISIONS APPLICABLE TO PETROLEUM EQUIPMENT
O.C. 220-2007, s. 1.
8.18. Petroleum equipment must
(1)  be installed in such a way as to safely contain the petroleum products to be handled and to resist wear, normal handling, fire and shocks;
(2)  be sufficiently leakproof to prevent the risk of explosion, fire, spillage or any other accident of that nature when used during construction work;
(3)  be installed in such a way as to prevent anyone not authorized by the person responsible for the equipment from gaining access to the equipment and be protected from coming into contact with any object that could cause an accident;
(4)  be installed and have the necessary protection devices to ensure the safety of the persons who have access to the equipment or who are supplied from it;
(5)  be designed, erected, installed or placed so that maintenance, repair or demolition work may be carried out; and
(6)  be designed for the use for which it is intended and to resist to the conditions of use to which it is submitted.
O.C. 220-2007, s. 1.
8.19. Petroleum equipment used to store a Class 1 petroleum product may not be installed in a heated room unless the room is heated by means of an appliance that has no ignition source.
O.C. 220-2007, s. 1.
8.20. In the presence of petroleum equipment, electrical service equipment, a pump or any other electrical equipment must meet the requirements regarding hazardous locations in Chapter V Electricity of the Construction Code.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 15.
8.21. (Revoked).
O.C. 220-2007, s. 1; O.C. 92-2014, s. 3; O.C. 87-2018, s. 16.
8.22. The erection or installation of an underground or aboveground tank, a petroleum products distributor and a pump or piping containing such products is prohibited less than 3 m from a vertical plane touching the closest outside wall of a subway works.
O.C. 220-2007, s. 1.
8.23. A contractor or owner-builder may not install an underground tank unless it has been approved in accordance with one of the following standards:
(1)  CAN/ULC-S603, Standard for Steel Underground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(2)  CAN/ULC-S603.1, External Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(3)  CAN/ULC-S615, Standard for Fibre Reinforced Plastic Underground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
The installation must also be carried out in compliance with the standard under which the tank has been approved.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 17.
8.24. A contractor or owner-builder may not install an aboveground tank unless it has been approved in accordance with one of the following standards:
(1)  CAN/ULC-S601, Standard for Shop Fabricated Steel Aboveground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(2)  CAN/ULC-S653, Standard for Aboveground Horizontal Steel Contained Tank Assemblies for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(3)  CAN/ULC-S655, Standard for Aboveground Protected Tank Assemblies for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(4)  CAN/ULC-S677, Standard for Fire Tested Aboveground Tank Assemblies for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(5)  API 650, Welded Tanks for Oil Storage, published by the American Petroleum Institute.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 18.
8.25. A contractor or owner-builder may install steel piping only if it meets the manufacturing requirements of one of the following standards:
(1)  API 5L, Specification for Line Pipe, published by the American Petroleum Institute;
(2)  ASTM A53/A53M, Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, published by the American Society for Testing and Materials International;
(3)  CSA Z245.1, Steel Pipe, published by the CSA Group.
In addition, if service pressure exceeds 875 kPa, piping and fittings must meet the requirements of ASME Standard B31.3, Process Piping, published by the American Society of Mechanical Engineers.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 19.
8.26. A contractor or owner-builder may not install copper piping.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 20.
8.27. A contractor or owner-builder may install nonmetallic piping only if it meets the requirements of CAN/ULCS660, Standard for Nonmetallic Underground Piping for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada. The piping must be installed so that there are no joints in the ground.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 21.
8.28. A contractor or owner-builder may install double-walled piping only if the piping meets the requirements of
(1)  section 8.25, if it is steel; or
(2)  section 8.27, if it is nonmetallic.
Such piping must be installed inside other piping that meets the requirements of section 8.25 or 8.27, as the case may be.
It must also have an automatic leak detection system with a visual and audible alarm that meets the requirements of ULC/ORD Standard C107.12, Line Leak Detection Devices for Flammable Liquid Piping, or CAN/ ULC-S675.2, Standard for Nonvolumetric Precision Leak Detection Devices for Underground and Aboveground Storage Tanks and Piping for Flammable and Combustible Liquids, published by the Underwriters’ Laboratories of Canada.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 22.
DIVISION VIII
SPECIAL PROVISIONS APPLYING TO HIGH-RISK PETROLEUM EQUIPMENT
O.C. 220-2007, s. 1.
§ 1.  — Underground tanks
O.C. 220-2007, s. 1.
8.29. An underground tank must, to be installed,
(1)  have a double wall and a capacity of more than 110,000 litres;
(2)  have, in its interstitial space, an automatic leak detection system with a visual and audible alarm manufactured under the requirements of CAN/ULCS675.1, Standard for Volumetric Leak Detection Devices for Underground and Aboveground Storage Tanks for Flammable and Combustible Liquids or CAN/ULCS675.2, Standard for Nonvolumetric Precision Leak Detection Devices for Underground and Aboveground Storage Tanks and Piping for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(3)  contain, in its interstitial space, where applicable, brine composed exclusively of calcium chloride with or without potassium chloride or sodium chloride where the respective concentration does not exceed 42%, 3% and 2%; and
(4)  have any damage repaired, before the tank is backfilled, according to the manufacturer’s specifications.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 23.
8.30. An underground tank must be installed
(1)  at least 1 m from the foundations of any building;
(2)  at least 1 m from any other tank;
(3)  at least 1 m from the property line;
(4)  at least 750 mm from the inner wall of the excavation; and
(5)  in such manner that the loads carried by the foundations or the supports of a building cannot be transmitted to the tank; in addition, the soil must not be removed from the footing down to the bed of the excavation, in a 45 ° slope.
O.C. 220-2007, s. 1.
8.31. An underground tank likely to be subjected to overhead vehicular traffic must be sited
(1)  at a depth not less than 1 m below ground level, be covered with not less than 900 mm of a backfill material referred to in section 8.33 and be covered with not less than 100 mm of bituminous concrete; or
(2)  at a depth of not less than 450 mm, be covered with at least 300 mm of a backfill material referred to in section 8.33 and be covered with a reinforced concrete slab not less than 150 mm thick; the slab must also extend at least 300 mm horizontally beyond the perimeter of the tank.
O.C. 220-2007, s. 1.
8.32. An underground tank not to be subjected to overhead vehicular traffic must be sited
(1)  at a depth of not less than 600 mm below ground level and be covered with a backfill material referred to in section 8.33; or
(2)  at a depth of not less than 400 mm, be covered with a backfill material referred to in section 8.33 and be covered with a reinforced concrete slab at least 100 mm thick.
O.C. 220-2007, s. 1.
8.33. An underground tank must be installed on a backfill foundation at least 300 mm thick, that exceeds the tank’s perimeter by at least 300 mm and is composed of one of the following materials:
(1)  in the case of a fibreglass tank, pea gravel, rounded pea gravel between 3 and 20 mm or crushed stone at least 3 mm and not more than 13 mm; in addition, each material used must be clean and without dust, sand, debris, organic material, ice or snow so that not more than 3% of its weight passes through a 2.5 mm sieve;
(2)  in the case of a steel tank, clean or natural sand free of stones compacted to at least 90% of the optimal density of the modified proctor determined according to CAN/BNQ Standard 2501-255, Soils - Determination of the Water Content-Dry Density Relation - Modified Effort Compaction Test (2,700 kN.m/m3), published by the Bureau de normalisation du Québec, and be without stone, debris, organic material, ice or snow; or
(3)  in the case of a jacketed steel underground tank, clean or natural sand free of stones compacted to at least 90% of the optimal density of the modified proctor determined according to CAN/BNQ Standard 2501-255, Soils - Determination of the Water Content-Dry Density Relation - Modified Effort Compaction Test (2,700 kN.m/m3), published by the Bureau de normalisation du Québec, and be without stone, debris, organic material, ice or snow, or pea gravel or rounded pea gravel between 3 and 20 mm.
The tank must be backfilled, as applicable, with the materials described in subparagraphs 1 to 3 of the first paragraph and be covered with a finishing grade layer not more than 300 mm thick.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 24.
8.34. An underground tank must be lowered into an excavation by the use of lifting lugs and hooks designed for that purpose or spreader bars, if required by the manufacturer’s instructions; the use of chains or slings around the tank is prohibited.
O.C. 220-2007, s. 1.
8.35. After an underground tank has been set in the excavation, it must undergo the leak tests listed below that are to be conducted in compliance with the following requirements:
(1)  for the inner wall of a tank,
(a)  all the tank’s caps must be removed and steel caps must be installed, after a joint compound or tape has been applied that meets the requirements of section 8.69;
(b)  a safety valve set to a pressure of not more than 40 kPa capable of discharging the flow from the pressure source must be installed on a tank opening and its operation inspected before each test;
(c)  the pressure inside the tank and in its interstitial space must be measured simultaneously using a pressure gauge calibrated in units of not more than 1 kPa;
(d)  a pressure of at least 30 kPa and not more than 35 kPa must be created inside the tank; and
(e)  the pressure in the interstitial space must remain stable;
(2)  for the outer wall of a tank,
(a)  the pressure inside the tank and in its interstitial space must be measured simultaneously using a pressure gauge calibrated in units of not more than 1 kPa;
(b)  the pressure source must come from the inside part of the tank and be transferred into the interstitial space until it reaches a pressure of at least 30 kPa and not more than 35 kPa; a tank manufactured under CAN/ ULC Standard S603.1, External Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada, may be pressurized according to the manufacturer’s instructions;
(c)  it must be tested using leak detection fluid; and
(d)  the interstitial space of a fibreglass tank must be inspected according to the manufacturer’s recommendations.
During the tests, once the temperature has been stabilized and the pressure source removed, the pressure created must be maintained for at least one hour.
The pressure created in the interstitial space of the tank must be released before the pressure of the inner wall.
During each test period, the necessary inspections must be made to ensure the tests are properly conducted and to prevent accidents.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 25.
8.36. In the case of a tank with compartments, each compartment must be tested separately in accordance with section 8.35, not simultaneously and only if the adjacent compartment is not under pressure.
O.C. 220-2007, s. 1.
8.37. If the tank has already contained a petroleum product or other flammable product, the leak tests required by section 8.35 must be conducted using nitrogen.
O.C. 220-2007, s. 1.
8.38. The tests required by section 8.35 need not be conducted if the contractor or owner-builder
(1)  ascertains that depressurization of at least 42 kPa created by the manufacturer in the interstitial space of the tank is maintained after it has been placed in the excavation; or
(2)  has conducted a vacuum test on the interstitial space at a pressure of at least 42 kPa for at least one hour, if such a test is authorized by the manufacturer.
O.C. 220-2007, s. 1.
8.39. When leakage is detected during the leak tests, the tank must be repaired and subjected to a new test or be replaced.
O.C. 220-2007, s. 1.
8.40. A contractor or owner-builder may not use a petroleum product to ballast a tank unless the tank has a fill pipe and a vent line and all other openings have been plugged.
O.C. 220-2007, s. 1.
8.41. If the water table is reached during excavation work to install an underground tank, the contractor or owner-builder must comply with the following requirements:
(1)  the up-lift stress of the tank must be calculated and a copy of the calculation must accompany the analysis documents and be sent to the owner to be filed in the petroleum equipment installation register that the owner must make available to the Board in accordance with Chapter VI of the Safety Code (chapter B-1.1, r. 3) made under the Building Act (chapter B-1.1);
(2)  the calculation must be based on the highest estimated water-level elevation;
(3)  if the calculation indicates that the up-lift stress is such that an empty tank could be displaced, the tank must be anchored by anchor straps attached to a reinforced concrete slab or to anchor weights under the tank, by ground anchors or by use of a reinforced concrete slab above the tank;
(4)  the size of the slab or anchors must be designed on the basis of the up-lift stress to which the empty tank will be submitted and in a manner to prevent it from lifting;
(5)  the tank must be separated from a concrete slab or anchor weight by a layer at least 300 mm thick of a backfill material referred to in section 8.33;
(6)  every anchor strap or ground anchor must be electrically insulated from the tank, be installed in such a manner that it does not damage the tank’s protective coating, and be tightened by hand in the case of a strap; and
(7)  the strength of the anchor straps and ground anchors must be determined on the basis of the factors mentioned in paragraph 4.
O.C. 220-2007, s. 1.
8.42. A contractor or owner-builder may not carry out construction work on a steel underground tank unless it is protected against corrosion in accordance with one of the methods in the following standards:
(1)  CAN/ULC S603.1, External Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada; or
(2)  NACE SP0169, Control of External Corrosion on Underground or Submerged Metallic Piping Systems, or NACE SP0285, Corrosion Control of Underground Storage Tank Systems by Cathodic Protection, published by NACE International, if the petroleum equipment installation is protected by an induced current system.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 26.
8.43. Every excavation in which a tank is installed must have at least one observation well.
The observation well must consist of a perforated pipe at least 150 mm in diameter installed vertically, extending down 900 mm below the bottom of the tank, and be accessible from the ground. The pipe must also be enclosed inside a permeable lining if it is buried in sand.
O.C. 220-2007, s. 1.
8.44. A contractor or owner-builder may neither install an underground tank that has been removed from the ground, nor refurbish, repair or alter it, unless it meets the requirement of CAN/ULC-S676, Standard for Refurbishing of Storage Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 27.
8.45. If construction work consists in removing petroleum equipment from the ground, the contractor or owner-builder must, as the case may be,
(1)  empty all petroleum product from the tank, piping and motor fuel dispensers, before their removal;
(2)  remove the tank and piping from the ground and from the site along with the motor fuel dispenser connected to it, after purging the tank of all vapours until the flammable vapour concentration is less than 20% of the lower explosive limit; or
(3)  destroy the tank as provided by section 8.68 or have it approved as provided by section 8.44, in which case it must be purged of any vapour and its openings must be hermetically sealed other than a ventilation opening of at least 60 mm in diameter.
8.46. A contractor or owner-builder may not carry out alteration work to an underground tank that may be abandoned on site, unless the contractor or owner-builder has obtained the certificate of a person recognized under section 8.13, stating that
(1)  removing the tank would jeopardize the integrity of the building’s structure or of a part that is essential for the intended use of the building; or
(2)  the machinery required for the removal of the tank cannot be taken onto the site.
The contractor or owner-builder must then
(1)  remove all sludge from the tank so as to prevent any explosion and dispose of it in a tank or other closed container compatible with petroleum products;
(2)  remove the piping from the ground;
(3)  purge the tank of all vapours until the concentration is less than 10% of the lower explosive limit; and
(4)  fill the tank with inert material such as sand, gravel or concrete and plug the openings.
O.C. 220-2007, s. 1.
§ 2.  — Aboveground tanks
O.C. 220-2007, s. 1.
8.47. An aboveground tank, a loading or unloading facility and metal piping installed on a tank must be protected against external corrosion by the use of paint, wrapping or coating.
O.C. 220-2007, s. 1.
8.48. Siting of an aboveground tank must conform to the requirements of the following Tables 2 and 3:
TABLE 2
SITING OF ABOVEGROUND TANKS
TABLE 3
DISTANCES BETWEEN TWO ABOVEGROUND TANKS
__________________________________________________________________________

Tank capacity Minimum free distance
__________________________________________________________________________

Tanks where none exceeds 1 m
230,000 L
__________________________________________________________________________

Tanks of various capacities, One-half of smallest tank
one only exceeding 230,000 L diameter, but never less than 1 m
__________________________________________________________________________

Tanks of equal capacity, each One-half diameter of one tank
exceeding 230,000 L
__________________________________________________________________________

Tanks of various capacities, One-half diameter of smallest
each exceeding 230,000 L tank
__________________________________________________________________________
D. 220-2007, a. 1; O.C. 87-2018, s. 28.
8.49. Despite section 8.48, an aboveground tank used to store motor fuel in a motor fuel dispensing outlet situated in a designated location must be installed so that the tank and the end of the motor fuel dispensing hose are at all times at least 12 m from any building or property line.
O.C. 220-2007, s. 1.
8.50. An aboveground tank used to store and sell motor fuel that is installed in a designated location within the limits of a municipality must be protected by a fence that meets the requirements of section 8.217.
O.C. 220-2007, s. 1.
8.51. A contractor or owner-builder may not install
(1)  an aboveground vertical tank, unless it rests on concrete or masonry foundations or on a bed of crushed stone, gravel, sand or a combination of those materials; or
(2)  an aboveground horizontal tank, unless it sits above ground level on a support of concrete, masonry or steel coated with an anti-corrosive material.
O.C. 220-2007, s. 1.
8.52. A steel support on which an aboveground tank is installed must have a fire-resistance rating longer than 2 hours within the meaning of Chapter I, except for a steel stand if the lowest point of the tank supported by it is not more than 300 mm above ground.
O.C. 220-2007, s. 1.
8.53. A contractor or owner-builder may not install a vertical tank directly on the ground, unless the slope allows water to flow away from the base of the tank.
O.C. 220-2007, s. 1.
8.54. In areas subject to earthquake forces, a tank used to store petroleum products, its supports and connections must be designed to resist such forces in compliance with
(1)  Part 4 of the Code referred to in Chapter I, as amended by Division III of that Chapter; and
(2)  Appendix A of CAN/ULC-S601, Standard for Shop Fabricated Steel Aboveground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 29.
8.55. A contractor or owner-builder may not install an aboveground tank on a flood zone referred to in the Protection Policy for Lakeshores, Riverbanks, Littoral Zones and Floodplains (chapter Q-2, r. 35), unless it is anchored to prevent floating.
O.C. 220-2007, s. 1.
8.56. A contractor or owner-builder may not install an aboveground tank, unless it is protected from vehicle impact.
O.C. 220-2007, s. 1.
8.57. A contractor or owner-builder may not install an aboveground tank that has piping or a fitting connected to it at a point below the highest level to which the petroleum product it contains may rise, unless the piping or fitting has a shut-off valve that meets the requirements of one of the standards referred to in section 8.115 and is located as near as is practicable to the shell of the tank.
O.C. 220-2007, s. 1.
8.58. A contractor or owner-builder may not install an aboveground tank used to store petroleum products, unless openings for gauging tanks have a vapour tight and lockable cover.
O.C. 220-2007, s. 1.
8.59. A contractor or owner-builder may not install an aboveground tank with a heating appliance, except if it has thermometers and thermostats so that the temperature of the product it contains is maintained at least 10 °C below the product’s flash point.
O.C. 220-2007, s. 1.
8.60. A contractor or owner-builder may not install an aboveground tank used to store petroleum products, unless it has a dike to form a diked area around the aboveground tank or tank farm holding 5,000 litres or more.
To that end, the diked area that protects
(1)  one tank only must have a capacity sufficient to contain a volume of liquid at least 10% greater than the volume of the tank;
(2)  several tanks must have a capacity sufficient to contain a volume of liquid at least equal to the volume of the greater of
(a)  the capacity of the largest tank plus 10% of the aggregate capacity of all the other tanks; and
(b)  the capacity of the largest tank plus 10%.
In calculating the capacity of the diked area, the volume of the part of the tanks situated below the top of the dike must be included.
O.C. 220-2007, s. 1.
8.61. The dike referred to in section 8.60 is not required for
(1)  a tank with a capacity of 50,000 litres or less that meets the following requirements:
(a)  it has an overfill protection device that meets the requirements of CAN/ULC-S661, Standard for Overfill Protection Devices for Flammable and Combustible Liquid Storage Tanks, published by Underwriters’ Laboratories of Canada, and a containment device with a capacity of at least 15 litres that meets the requirements of CAN/ ULC-S663, Standard for Spill Containment Devices for Flammable and Combustible Liquid Aboveground Storage Tank, published by Underwriters’ Laboratories of Canada;
(b)  it meets one of the standards referred to in paragraphs 2 to 4 of section 8.24 or, in the case of a double-walled tank, the standard referred to in paragraph 1 of that section;
(2)  a tank used to store Type No. 4, No. 5 or No. 6 heating fuel oil if it has a system capable, in the event of leakage, of containing or directing the product to a safe location.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 30.
8.62. A contractor or owner-builder may not construct a dike around an aboveground tank, unless it meets the following requirements:
(1)  the dike must be of earthwork, steel, concrete or bonded masonry, be liquid-tight and be capable of withstanding a full hydrostatic head;
(2)  the slope of the walls of the dike must be consistent with the angle of repose of the material used;
(3)  the dike must not be higher than 1.8 m from the bottom of the diked area;
(4)  the minimum distance between the dike centre line and the outer tank shell must meet the requirements of Table 2 of section 8.48; and
(5)  the inner wall and the bottom of a diked area must be impermeable to petroleum products and, to that end, the impermeability must be ensured by
(a)  a liner protected against loads and fire complying with CAN/ULC-S668, Standard for Liners Used for Secondary Containment of Aboveground Flammable and Combustible Liquid Tanks, published by Underwriters’ Laboratories of Canada;
(b)  a compacted layer of homogeneous soil at least 3 m thick where the water permeability coefficient of the soil is equal to or less than 10-6 cm/s; and
(c)  a construction consisting of concrete or other incombustible material, provided that the diked area is approved by an engineer who is a member of the Ordre des ingénieurs du Québec.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 31.
8.63. In the case of subparagraph b of paragraph 5 of section 8.62, the contractor or owner-builder must obtain a laboratory report attesting to the required permeability and thickness of the soil. A copy of the report must be sent to the owner of the tank to be filed in the register referred to in paragraph 1 of section 8.41.
O.C. 220-2007, s. 1.
8.64. A contractor or owner-builder may not install a tank used to store a Class 1 petroleum product, except if access to the roof of the tank and to the shut-off valve controls is situated higher than the height of the dike if
(1)  the height of the dike exceeds 3.5 m; or
(2)  the distance between the tank and the top inside edge of the dike wall is lower than the height of the dike.
O.C. 220-2007, s. 1.
8.65. A contractor or owner-builder may not construct a diked area for an aboveground tank, unless
(1)  the diked area has a drainage system such as a sump or a channel located at its lowest point and has a closed valve to drain the water;
(2)  the control for the drainage system valve is accessible at all times;
(3)  the bottom of the diked area has a uniform slope of at least 1% between any tank and the lowest point; and
(4)  the diked area complies with section 22.11.2.6 of NFPA Standard 30 Flammable and Combustible Liquids Code, published by the National Fire Protection Association, if it contains more than 1 tank.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 32.
8.66. If construction work consists in removing aboveground petroleum equipment, the contractor or owner-builder must
(1)  drain petroleum products from tanks, piping, motor fuel dispensers and loading and unloading equipment before they are removed; and
(2)  remove all tanks, piping, motor fuel dispensers, loading and unloading equipment and any leakage and spillage protection work from the site.
O.C. 220-2007, s. 1.
8.67. A contractor or owner-builder may not install an aboveground tank or aboveground piping that has already been used, unless the following requirements are met:
(1)  the tank must be approved in accordance with CAN/ULC-S676, Standard for Refurbishing of Storage Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada;
(2)  (paragraph revoked);
(3)  the piping must be cleaned, inspected and protected against external corrosion.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 33.
§ 3.  — Demolition work
O.C. 220-2007, s. 1.
8.68. A contractor or owner-builder may not demolish a tank unless the tank has been
(1)  cleaned of any petroleum product residue; and
(2)  purged of any vapour while ensuring that, during the demolition operation, the concentration of vapours is less than 10% of the lower explosive limit at all times.
The work must be carried out in such a manner as to render the tank unusable and to prevent any accumulation of flammable vapours. The work must in addition be carried out in a safe location where the public has no access, using the equipment necessary to recover all petroleum product residue; that location must also comply with the planning by-laws in force in the territory of the municipality where the work is carried out.
A contractor or owner-builder must in addition place petroleum product residue in a tank or other closed container compatible with petroleum products. The residue and materials from the dismantling must be shipped to a site authorized under the Environment Quality Act (chapter Q-2).
O.C. 220-2007, s. 1.
§ 4.  — Piping
O.C. 220-2007, s. 1.
8.69. The threaded joint in piping used to contain petroleum products must be made using a joint compound or polytetrafluoroethylene tape that meets the requirements of CAN/ULC Standard S642 Standard for Compounds and Tapes for Threaded Pipe Joints, published by Underwriters’ Laboratories of Canada.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 34.
8.70. Piping used to contain petroleum products must be welded in compliance with API Standard 1104 Welding of Pipelines and Related Facilities, published by the American Petroleum Institute.
O.C. 220-2007, s. 1.
8.71. Except in the case of piping supplying a marina bulk plant, a contractor or owner-builder may install a petroleum equipment installation only if it has separate pipe lines for
(1)  unleaded regular or premium automotive gasoline included in Class 1 petroleum products;
(2)  Class 1 petroleum products other than automotive gasoline;
(3)  Class 2 petroleum products; and
(4)  Class 3 petroleum products.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 35.
8.72. A contractor or owner-builder may not install metallic piping on a petroleum equipment installation, including its couplings, flanges and bolts, unless it is protected against external corrosion.
O.C. 220-2007, s. 1.
8.73. A contractor or owner-builder may not install the transfer pump of a petroleum equipment installation able to create a pressure greater than that which the downstream piping components can withstand, unless the pump has a safety valve and a bypass.
O.C. 220-2007, s. 1.
8.74. A contractor or owner-builder may not use in construction work aboveground piping, valves, connections or any other material, unless they are suitable for the maximum pressure and temperature for proper operation and for the chemical properties of the liquid the piping is to contain.
The contractor or owner-builder also may not use material that cannot withstand internal stress or mechanical damage related to its use or a combustible or low-melting material subject to failure even in a light fire.
O.C. 220-2007, s. 1.
8.75. The underground piping of a petroleum equipment installation that is to pass through concrete must be installed in a sleeve to allow for expansion.
O.C. 220-2007, s. 1.
8.76. Aboveground piping that is to contain petroleum products must, to be used, have been designed to make provision for thermal expansion and contraction related to its use.
O.C. 220-2007, s. 1.
8.77. Piping that is to contain petroleum products must be installed to be accessible where it enters a building, and have inside and outside control valves.
O.C. 220-2007, s. 1.
8.78. Every underground part of piping that is to contain petroleum products must, to be used, have a double wall that meets the requirements of section 8.28 and be connected at its lowest point with a liquid-tight collector well.
The collector well must, in addition, have an automatic leak detection system with a visual and audible alarm that meets the requirements of section 8.28.
O.C. 220-2007, s. 1.
8.79. Construction work carried out on underground piping must, in addition to meeting the requirements of this Chapter, be carried out according to the manufacturer’s instructions.
O.C. 220-2007, s. 1.
8.80. A joint at the point of connection of underground piping with a tank must be a swing joint or have an underground flexible connection, unless the piping is vertical at its point of connection to the tank over its entire length.
In addition, a swing joint or flexible connection must be connected at the base of each dispenser, at the connection of a submersible pump and the vertical portion of the vent.
Despite the foregoing, a swing joint is not required if the piping is flexible.
O.C. 220-2007, s. 1.
8.81. Piping connected to an underground tank that is to supply it must be connected at the top of the tank. The piping must also be free of pockets or traps allowing liquid to accumulate, and have a minimum 1% slope towards the tank.
O.C. 220-2007, s. 1.
8.82. Piping must be backfilled
(1)  with clean or natural sand free of stones compacted mechanically on site in the case of steel piping;
(2)  with crushed stone or pea gravel in the case of fibreglass piping; or
(3)  according to the manufacturer’s instructions in the case of flexible piping.
O.C. 220-2007, s. 1.
8.83. Underground piping must be backfilled with one of the materials referred to in section 8.82 in such manner that
(1)  the piping is bedded on at least 150 mm of backfill;
(2)  there is at least 150 mm of backfill measured horizontally between the piping and the excavation wall;
(3)  the backfill between each pipe is at least twice as thick as the nominal diameter of the largest pipe; and
(4)  the backfill above the piping is at least 450 mm deep including the finishing grade layer.
O.C. 220-2007, s. 1.
8.84. Underground piping must, before being connected to a tank, be subjected to a leak test conducted in compliance with the following requirements:
(1)  for the inner wall,
(a)  the ends of the pipes must be hermetically plugged;
(b)  the pressure created inside the piping must be measured using a pressure gauge calibrated in units of not more than 10 kPa;
(c)  air or nitrogen hydrostatic pressure of not less than 350 kPa and not more than 700 kPa must be applied;
(d)  each connection or accessible part of the piping must be tested before being backfilled, using leak detection fluid;
(e)  once the temperature has been stabilized and the pressure source removed, the pressure created must be maintained for at least one hour; and
(f)  if the piping is designed to be exclusively used as suction piping, it must be leak tested according to the manufacturer’s instructions; and
(2)  for the outer wall of double-walled piping, the leak test must be conducted according to the manufacturer’s instructions.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 36.
8.85. Every connection to underground piping that has not been leak tested under section 8.84 must, after being connected to the tank, be subjected to an air leak test or nitrogen leak test conducted in compliance with the following requirements:
(1)  a safety valve of not more than 40 kPa capable of discharging the flow from the pressure source must be installed and inspected before each test;
(2)  the pressure created inside the tank and the piping must be measured using a pressure gauge calibrated in units of not more than 1 kPa;
(3)  a pressure of not less than 30 kPa and not more than 35 kPa must be applied over the entire petroleum equipment installation being tested;
(4)  all the connections between the tank and the piping must be leak tested with leak detection fluid while the entire installation is under pressure; and
(5)  once the temperature has been stabilized and the pressure source removed, the pressure must be maintained for at least 1 hour.
O.C. 220-2007, s. 1.
8.86. Despite sections 8.84 and 8.85, air may not be used in a leak test for petroleum equipment that has already contained a petroleum product or that has not been purged of all petroleum product vapour.
O.C. 220-2007, s. 1.
8.87. If a leak test reveals leakage, all connections between the tank and the piping must be repaired or replaced and subjected to the tests referred to in sections 8.84 and 8.85.
O.C. 220-2007, s. 1.
8.88. Metal material that is to contain petroleum products and that is used during the installation, repair or alteration of underground piping, including galvanized steel piping, valves, vents and underground metallic connections, must be new and protected against corrosion in compliance with Appendix A of CAN/ULC Standard S603.1 External Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
Corrosion protection in compliance with that method is not required if the piping is used in a designated location for a period of less than 2 years.
O.C. 220-2007, s. 1.
8.89. Underground metallic piping installed during construction work must be installed with at least 2,000 kPa resistance screwed fittings or Schedule 40 welded fittings.
The use of tightened end joints or fully threaded joints for that purpose is prohibited.
O.C. 220-2007, s. 1.
8.90. A coupler used on underground piping must be a 2,000 kPa coupler designed for petroleum products.
O.C. 220-2007, s. 1.
8.91. A swing joint connected during construction work on threaded steel underground piping must be connected with two 90 ° elbows and a nipple.
For that purpose, the use of the following is prohibited:
(1)  a male-female elbow,
(2)  a close fully-threaded nipple, and
(3)  a 45 ° elbow.
O.C. 220-2007, s. 1.
8.92. Underground galvanized steel piping may not be welded during construction work.
O.C. 220-2007, s. 1.
8.93. Non-metallic piping used during construction work must be underground.
O.C. 220-2007, s. 1.
8.94. A swing joint connected during construction work on rigid non-metallic underground piping must have a 90 ° elbow that can be connected to the petroleum product extraction system, a 1.5 metre-long non-metallic nipple connected to another 90 ° elbow in turn connected to non-metallic piping at least 1.5 m in length, installed respecting that sequence.
That type of swing joint may not be connected at the base of a dispenser.
O.C. 220-2007, s. 1.
8.95. The tank of a petroleum equipment installation installed during construction work must have a vent.
The vent may not be connected to more than one tank unless it is of a diameter that allows the vapours from the various tanks to be purged without causing the allowable stress for each tank to be exceeded.
The vent on a tank that is to contain a Class 1 petroleum product may not be connected to the vent of a tank that is to contain a Class 2 or Class 3 petroleum product.
O.C. 220-2007, s. 1.
8.96. The vent referred to in section 8.95 must, in the case of a tank that is to contain a Class 1 or Class 2 petroleum product, have a weather-proof hood, and a flame arrester device in the case of a tank that is to contain a Class 1 petroleum product.
Such a device must not create additional resistance to the flow of gases.
The vent must also be connected to the top of the tank by means of piping with a minimum 1% slope towards the tank and the aboveground portion of the vent must be protected from vehicle impact.
O.C. 220-2007, s. 1.
8.97. The vent referred to in section 8.95 must be located outside a building and positioned in such a manner that flammable vapours cannot be drawn into the building.
The end must be
(1)  higher than the end of the fill pipe;
(2)  at a distance of not less than 3.5 m, in the case of a tank containing a Class 1 petroleum product, or 2 m in the case of a tank containing other petroleum products;
(3)  at a distance of not less than 1.5 m from any building opening in the case of a tank containing a Class 1 petroleum product, or not less than 600 mm in the case of a tank containing other petroleum products; and
(4)  at a distance of not less than 7.5 m from any dispenser, in the case of an underground tank containing gasoline.
O.C. 220-2007, s. 1.
8.98. Vent piping for an underground tank must have a cross-sectional area sufficient to allow filling or withdrawal at the maximum rate without causing the allowable stress for the tank to be exceeded.
O.C. 220-2007, s. 1.
8.99. Vent piping for an underground tank must be installed so that it is free from any device likely to cause back pressure exceeding the allowable stress for the tank.
In the case of an underground tank to be used to store a Class 2 or Class 3 petroleum product, vent piping may be fitted with return bends, coarse screens or other devices designed to minimize the entry of material.
O.C. 220-2007, s. 1.
8.100. The minimum diameter of the vent referred to in section 8.99 must respect the values in the following Table 4 if the vent piping does not have more than 7 elbows; in other cases, the diameter must exceed the values so that the allowable stress for the tank is not exceeded.
TABLE 4
VENT DIAMETERS (mm)
________________________________________________

Maximum flow Pipe length
Rate (L/min)
_____________________________

15 m 30 m 60 m
________________________________________________

380 32 32 32
760 32 32 32
1,140 32 32 38
1,520 32 38 50
1,900 32 38 50
2,280 38 50 50
2,660 50 50 50
3,040 50 50 75
3,420 50 50 75
3,800 50 50 75
________________________________________________
N.B.: Vent size is based on the highest filling or emptying flow rate.
O.C. 220-2007, s. 1.
8.101. The vent referred to in section 8.99 may not extend more than 25 mm inside an underground tank, unless it has an alarm.
O.C. 220-2007, s. 1.
8.102. A contractor or owner-builder may not install an aboveground tank unless it has safety venting that meets API Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks, published by the American Petroleum Institute or one of the construction standards referred to in section 8.24.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 37.
8.103. A contractor or owner-builder may not install, in a petroleum equipment installation, aboveground piping that crosses a road, public road or public service installation, unless the piping meets the requirements of CAN/CSA Standard Z662, Oil and Gas Pipeline Systems, published by the CSA Group.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 38.
8.104. An aboveground piping system installed on a petroleum equipment installation must have bypasses or safety valves capable of preventing over-pressurization.
O.C. 220-2007, s. 1.
8.105. Aboveground piping used during construction work must have been designed and installed so that petroleum product velocity in the piping does not exceed 2.5 m/s, unless the piping is directly connected to a marine wharf.
In addition, insulation wrapping on aboveground piping must be non-combustible and, if inside a building, must meet the requirements of Chapter I.
O.C. 220-2007, s. 1.
8.106. Aboveground piping that is to contain petroleum products, the piping valves and fill pipe of a petroleum equipment installation installed during construction work must display permanent identification of contents in compliance with the document entitled “Colour-Symbol System to Mark Equipment and Vehicles for Product Identification”, published by the Canadian Fuels Association.
In addition, the piping may not be red in colour.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 39.
8.107. Flanged joints for aboveground piping must be provided in welded systems at intervals that will facilitate dismantling and avoid subsequent in-place cutting and welding operations.
Flanged joints must be made with forged or cast steel flanges designed, manufactured and installed in compliance with ASME Standard B16.5 Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24 Metric/Inch Standard, published by the American Society of Mechanical Engineers; bronze flanges may be used on copper or brass piping not exceeding 50 mm in diameter.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 40.
8.108. Only welded, screwed or flanged connections may be installed on piping inside a tank dike.
O.C. 220-2007, s. 1.
8.109. Bolting materials for flanged connections installed on aboveground piping that is to contain petroleum products must be of alloy steel corresponding to Grade B-7 in ASTM A193/A193M, Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications, published by the American Society for Testing and Materials International.
Gaskets in flanged connections must be of a material resistant to the liquid contained in the piping and capable of withstanding temperatures of at least 650 °C without damage.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 41.
8.110. At the time of installation, aboveground piping must be subjected to a leak detection test conducted in compliance with the following requirements:
(1)  a test pressure of not less than 350 kPa, or 1 1/2 times the maximum operating pressure that may be produced within the piping, whichever is greater, must be created within the piping;
(2)  the piping system and its joints must be inspected with leak detection fluid;
(3)  the pressure created in the piping must be measured using a pressure gauge calibrated in units of not more than 4 kPa for gauge pressure equal to or less than 700 kPa and in units not greater than 1% of the test pressure, if it exceeds 700 kPa and the piping system is designed for such pressures.
If test pressures exceed the design pressures for pumps or similar components in the piping system, the pumps or components need not be pressure tested.
O.C. 220-2007, s. 1.
8.111. (Revoked).
O.C. 220-2007, s. 1; O.C. 87-2018, s. 42.
8.112. Aboveground piping must be installed in such manner as to reduce vibrations and stress to a minimum and not come directly into contact with the ground.
The use of expansion shields to suspend aboveground piping is prohibited in lightweight concrete or gypsum assemblies.
Aboveground piping must also be protected by barriers in areas subject to vehicle impact.
O.C. 220-2007, s. 1.
8.113. The installation of the following is prohibited:
(1)  aboveground outdoor piping on walls unless the walls are of non-combustible construction;
(2)  outdoor piping above windows;
(3)  outdoor piping above roofs, except roofs that are non-combustible and impermeable to petroleum products with provision for the collection of spillage to prevent a fire; and
(4)  piping containing petroleum products in service tunnels used for pedestrian traffic other than tunnels reserved for maintenance personnel.
O.C. 220-2007, s. 1.
8.114. (Revoked).
O.C. 220-2007, s. 1; O.C. 87-2018, s. 43.
8.115. A contractor or owner-builder may not install valves or safety valves in aboveground piping that is to carry petroleum products, unless they meet the manufacturing specifications in either of the following standards: ULC/ORD-C842 Guide for the Investigation of Valves for Flammable and Combustible Liquids or CAN/ULC-S651, Standard for Emergency Valves for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 44.
8.116. A shut-off valve must be installed on the aboveground piping of a petroleum equipment installation at the following locations:
(1)  at connections of the piping to aboveground tanks;
(2)  on supply piping where it enters buildings or any other works or place immediately accessible from the outside of the buildings or works;
(3)  on branch lines from the main supply line;
(4)  on supply lines at petroleum products dispensing locations;
(5)  at connections of meters or air bleeder valves; and
(6)  at connections of pumps.
O.C. 220-2007, s. 1.
8.117. Diaphragm valves must have no direct connections to aboveground piping between the liquid and air section.
O.C. 220-2007, s. 1.
8.118. Globe valves installed on aboveground piping must be arranged so that the packing is on the low pressure side.
O.C. 220-2007, s. 1.
8.119. Rising stem or other indicating-type valves must be used to determine whether the valves are open or shut.
O.C. 220-2007, s. 1.
8.120. Cast-iron meters installed on aboveground piping must have steel valves on each side.
O.C. 220-2007, s. 1.
8.121. Valves installed on aboveground piping must be identified in compliance with section 8.106.
O.C. 220-2007, s. 1.
8.122. Water bleed valves installed on aboveground tanks must be made of steel and protected from impact if the valves are outside the aboveground tanks.
O.C. 220-2007, s. 1.
8.123. Heating equipment for aboveground piping containing petroleum products that is installed on a petroleum equipment installation must be designed not to overheat or create an ignition source for the liquids being heated.
For that purpose, the heating equipment may consist of
(1)  steam lines if
(a)  the minimum steam temperature and pressure to make the liquid fluid are used;
(b)  a pressure regulator is provided on the steam line with a relief valve on the downstream side of the regulator; and
(c)  the steam lines and piping are insulated in compliance with the requirements of Chapter I;
(2)  a set of electrical heating cables; and
(3)  low-voltage alternating current passing through the piping provided that
(a)  the heated sections of piping are isolated from the unheated sections by non-conductive material; and
(b)  all piping and fittings are enclosed by insulating coverings that prevent accidental grounding of the heating equipment.
O.C. 220-2007, s. 1.
8.124. The intake end of a fill pipe or gauge pipe of an underground tank must be
(1)  located outside a building, more than 1.5 m from any building opening and in a place free of any ignition source;
(2)  (paragraph revoked);
(3)  capable of filling a tank containing motor fuel on land not forming part of a public road within the meaning of the second paragraph of section 66 of the Municipal Powers Act (chapter C-47.1).
O.C. 220-2007, s. 1; O.C. 87-2018, s. 45.
8.125. A remote intake end of a fill pipe referred to in section 8.124 from an underground tank must be located lower than other outlets from the tank, unless the tank
(1)  is a tank with an overfill protection device that meets CAN/ULC-S661, Standard for Overfill Protection Devices for Flammable and Combustible Liquid Storage Tanks, published by Underwriters’ Laboratories of Canada, adapted so as to include in the tank the volume of petroleum product that could be contained in the fill pipe without exceeding the maximum filling level of the tank as specified in the Standard; or
(2)  is a tank with a backflow device inside the piping connected to other openings.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 46.
8.126. A fill pipe installed on an underground tank must be connected to the top part of the tank.
O.C. 220-2007, s. 1.
8.127. A contractor or owner-builder may not install an underground tank that is to contain motor fuel, unless the tank has an overfill protection device that meets the requirements of CAN/ULC-S661, Standard for Overfill Protection Devices for Flammable and Combustible Liquid Storage Tanks and a spill containment device that meets the requirements of CAN/ULC-S664, Standard for Containment Sumps, Sump Fittings, and Accessories for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 47.
8.128. The intake end of a fill pipe or gauge pipe installed on an underground tank must have a tight-fitting cap.
It must also be protected against vehicle impact by at least one barrier if the pipe extends above ground level.
If the intake end of a fill pipe or gauge pipe is below or at ground level, it must be protected by a box with a cover made of metal or concrete that prevents any transmission of surface loads to the tank.
O.C. 220-2007, s. 1.
8.129. A fill pipe installed on a tank that is to store motor fuel must extend to not more than 200 mm from the bottom of the tank and be fixed in such a way as to minimize vibration.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 48.
8.130. If a petroleum equipment installation is altered to replace an underground tank, steel piping that is not protected against corrosion and connected to the tank must be removed from the ground, unless it is subjected to a leak detection test that meets the requirements of the second paragraph indicating that it is liquid-tight and protected against corrosion in compliance with NACE SP0169 Control of External Corrosion on Underground or Submerged Metallic Piping Systems or NACE SP0285, Corrosion Control of Underground Storage Tank Systems by Cathodic Protection, published by NACE International.
The leak detection test must be conducted using a hydrostatic or vacuum method capable of detecting leaks of 1.2 L/h with a 95% probable success rate and a margin of error of no more than 5%, or using any other method capable of detecting leaks of 0.76 L/h, with the same probabilities, with the exception of pneumatic tests using gas, in the case of tanks except observation well surveillance systems. The methods must in addition meet the requirements of one of the following standards: EPA 530/UST-90/004 Standard Test Procedures for Evaluating Leak Detection Methods: Volumetric Tank Tightness Testing Methods, EPA 530/UST-90/007 Standard Test Procedures for Evaluating Leak Detection Methods: Statistical Inventory Reconciliation Methods, published by the Environmental Protection Agency.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 49.
§ 5.  — Maintenance work
O.C. 220-2007, s. 1.
8.131. Construction work carried out on piping for a petroleum equipment installation must be carried out only when it is not under pressure.
O.C. 220-2007, s. 1.
8.132. The piping for a petroleum equipment installation must be drained before being dismantled.
O.C. 220-2007, s. 1.
8.133. The ambient air must be tested with a flammable vapour indicator before cutting or welding work on a petroleum equipment installation to ensure that no explosive concentration is present.
Two portable extinguishers having a minimum rating of 20-B: C must also be available on the work site while the work is being carried out.
O.C. 220-2007, s. 1.
DIVISION IX
PROVISIONS APPLICABLE TO MOTOR FUEL DISPENSING OUTLETS AND SERVICE CENTRES
O.C. 220-2007, s. 1.
§ 1.  — General
O.C. 220-2007, s. 1.
8.134. A sign must be posted indicating the operating instructions of a self-serve facility.
In the case of an unattended self-serve facility, a service station or a motor fuel dispensing outlet where an attendant dispenses motor fuel to a vehicle, a sign must be posted indicating the operating instructions of every pump island if the dispensing outlet has more than one pump island.
Every pump island must also have a sign at least 100 mm in height by 180 mm in width visible from the fuelling area and displaying
(1)  the words: “DÉFENSE DE FUMER” and “ARRÊTEZ LE MOTEUR AVANT LE REMPLISSAGE” in letters at least 25 mm in height; or
(2)  the pictograms as illustrated in Schedule I.
O.C. 220-2007, s. 1.
8.135. Dispensing outlets in an installation dispensing a petroleum product must be clearly legible and indicate the type of motor fuel dispensed.
O.C. 220-2007, s. 1.
8.136. The intake end of a fill pipe installed on a tank storing motor fuel must have a tight-fitting device that prevents opening by a person who is not authorized by the person responsible for the equipment.
O.C. 220-2007, s. 1.
8.137. The fuelling area of an installation dispensing motor fuel must be lighted to the intensity of at least 50 lx or 5 W/m2 for incandescent lighting.
O.C. 220-2007, s. 1.
8.138. The total capacity of all underground tanks in a motor fuel dispensing outlet may not exceed 250,000 litres.
O.C. 220-2007, s. 1.
8.139. Aboveground tanks that are to store motor fuel may be installed only for the supply of
(1)  a vehicle in a designated location that is not within the limits of a municipality;
(2)  an all-terrain vehicle, a snowmobile or any other vehicle of the same kind;
(3)  a vehicle in a user outlet;
(4)  an aircraft or a water craft; or
(5)  a vehicle in a territory north of the 50th parallel of north latitude and east of the 63rd meridian, or north of the 53rd parallel of north latitude.
An outside aboveground tank in a motor fuel dispensing outlet must have a capacity of not more than 50,000 litres and the aggregate capacity of all tanks in the outlet may not exceed 150,000 litres.
O.C. 220-2007, s. 1.
8.140. A booth erected in a motor fuel dispensing outlet must be made of materials that do not sustain a flame and provide an unobstructed view from inside the booth at all times of the interior surroundings and of the fuelling areas in their entirety.
No combustion heating appliance may be located in a booth.
O.C. 220-2007, s. 1.
8.141. A contractor or owner-builder may not install a Class 1 or Class 2 petroleum product motor fuel dispenser unless it meets the requirements of CSA Standard B346, Power-Operated Dispensing Devices for Flammable Liquids, published by the CSA Group.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 50.
8.142. A motor fuel dispenser in a motor fuel dispensing outlet must be situated on an island at least 100 mm high, made of concrete or other non-combustible material or be protected from vehicle impact by barriers; that requirement does not apply to a dispenser fixed on an aboveground tank.
O.C. 220-2007, s. 1.
8.143. A contractor or owner-builder may not install a pump island, unless it has, for each dispenser, a dispenser sump that meets the requirements of CAN/ULC-S664, Standard for Containment Sumps, Sump Fittings, and Accessories for Flammable and Combustible Liquids, or CAN/ULC-S653, Standard for Aboveground Horizontal Steel Contained Tank Assemblies for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada; that requirement does not apply to a pump island on a floating wharf.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 51.
8.144. The fuelling area in a motor fuel dispensing outlet must be impermeable to petroleum products over a surface extending at least 3 m in front and 1.5 m to the sides of each motor fuel dispenser measured from the centre of the dispenser. Despite the foregoing, that requirement does not apply to a fuelling area
(1)  for off-highway vehicles or farm equipment;
(2)  to be used for a single period of less than one year;
(3)  situated in a designated location; or
(4)  the tanks of which have a capacity lower than 2,500 litres.
The impermeability referred to in the first paragraph may be obtained using a reinforced concrete apron or an asphalt layer treated to make it resistant and impermeable to petroleum products.
O.C. 220-2007, s. 1.
8.145. A dispenser installed or altered in a motor fuel dispensing outlet must comply with the clearances in the following Table 5:
TABLE 5
MOTOR FUEL DISPENSER CLEARANCES (M)



Dispenser Unattended Marina User outlet Airport outlet
outlet self-serve outlet

facility


From a building, 4.5(1) 6(1) 5 1(3) 15
except a booth


From property 4.5(1) 6(1) 4.5(1) 4.5(3) 15
lines


From a stationary 6(2) 6(2) 8 7.5(3) 6(2)
ignition source


From a building __ __ __ 4.5(3) __
opening other
than a booth
opening


From a dock,
wharf, pier or __ __ 5 __ 5
pontoon or
approach thereto

(1) If a petroleum product installation is altered, a dispenser installed before 1973 need not be relocated or may be replaced by another dispenser at the same place if it has the same number of dispensing hoses and dispenses the same number of products. In the case of a marina outlet, the shore is not to be considered a property line.
(2) Applies only to a fuel dispenser dispensing a Class 1 petroleum product.
(3) If a petroleum product installation is altered, a dispenser installed before 11 July 1991 need not be relocated or may be replaced by another dispenser at the same place if it has the same number of dispensing hoses and dispenses the same number of products.
In addition, the clearances must be increased, if necessary, so that any vehicle to be fuelled from that dispenser is completely within the property lines of the place where the dispenser is located.
O.C. 220-2007, s. 1.
8.146. A clearly identified and accessible emergency shut-off switch must be located away from any motor fuel dispenser at a distance not exceeding 25 m.
O.C. 220-2007, s. 1.
8.147. A motor fuel dispenser may be installed inside a building if it dispenses a Class 2 or Class 3 petroleum product provided that
(1)  the building is not accessible to the public;
(2)  the dispenser is on the first storey;
(3)  the ventilation of the building meets the requirements of Part 6 of Chapter I; and
(4)  a drainage system is installed for petroleum products that may be spilled.
O.C. 220-2007, s. 1.
8.148. The pumps of a motor fuel dispenser installed or altered in a motor fuel dispensing outlet must have a mechanism that will prevent the dispenser pump from operating until a dispensing nozzle has been removed from its housing if the pump has been hand-activated, and that will shut off the pump when all nozzles have been reinserted in their housing; if the pump is connected to a satellite dispenser, it must also have a mechanism that prevents simultaneous dispensing of motor fuel.
The first paragraph does not apply to a dispenser that has a coiling mechanism.
O.C. 220-2007, s. 1.
8.149. If a submersible pump is installed in a motor fuel dispensing outlet, the dispenser must have a fusible safety valve set not higher than 70 °C, firmly attached to the pump island and meeting the requirements of CAN/ ULC-S651, Standard for Emergency Valves for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada.
That requirement also applies to a tank installed or altered at a level higher than the base of a motor fuel dispenser. If it is an aboveground tank, it must have a mechanical or electrical anti-siphon valve installed where the piping connects to the tank. The safety valve must also be installed so that the shear point is situated in the zone extending 25 mm below the base of a motor fuel dispenser to 13 mm above the base.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 52.
8.150. The pump referred to in section 8.149 must have a leak detector device that, if the circumstances require, prevents the pump from operating.
O.C. 220-2007, s. 1.
8.151. The pumps of a motor fuel dispenser installed in a motor fuel dispensing outlet must have a control device to prevent the pressure created from exceeding the allowable stress limit.
O.C. 220-2007, s. 1.
8.152. The pit for a submersible pump or the piping of a submersible pump in a motor fuel dispensing outlet must be enclosed in a liquid-tight casing resistant to petroleum products. The casing must also be covered and installed in such a manner as to prevent external loads being transmitted to the tank or piping.
The pit must be large enough to enable the pump to be inspected and serviced.
O.C. 220-2007, s. 1.
8.153. The dispensing nozzle on a dispenser hose in a motor fuel dispensing outlet must have
(1)  an automatic shut-off device if it dispenses a Class 1 or Class 2 petroleum product motor fuel, except in the case of an airport outlet; and
(2)  a rubber anti-splash collar.
The installation of a dispensing nozzle with a latch-open device at a self-serve facility, an airport outlet or a marina outlet is prohibited.
O.C. 220-2007, s. 1.
8.154. A contractor or owner-builder may not install a dispensing nozzle on a motor fuel dispenser hose unless the nozzle meets the requirements of CAN/ULC Standard S620 Hose Nozzle Valves for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada, or is of a type used for aviation fuel, at an airport outlet.
O.C. 220-2007, s. 1.
8.155. A contractor or owner-builder may not install on a motor fuel dispenser a hose that dispenses a Class 1 or Class 2 petroleum product unless the hose meets the requirements of CAN/ULC-S612, Standard for Hose and Hose Assemblies for Flammable and Combustible Liquids, published by Underwriters’ Laboratories of Canada, or is a type used for aviation fuel, at an airport outlet. The dispenser must also be designed so that a person fuelling a vehicle activates the dispensing nozzle manually.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 53.
8.156. A hose on a motor fuel dispenser must be no longer than
(1)  5 m; it may however be 6 m long if it has a retracting mechanism;
(2)  6 m for an unattended self-serve facility; it may however be 7.5 m long if it has a retracting or coiling mechanism; or
(3)  7.5 m for an airport outlet, a user outlet or a marina outlet if it has a retracting mechanism; that requirement does not apply to a hose with a coiling mechanism.
O.C. 220-2007, s. 1.
§ 2.  — Service stations and service centres
O.C. 220-2007, s. 1.
8.157. Petroleum equipment may be installed in or near a building housing a service station or service centre if
(1)  the hazardous areas listed in Schedule II are separated from any room housing a solid or liquid fuel or gas heating appliance by walls having a fire-resistance rating of at least one hour within the meaning of Chapter I;
(2)  the room containing such heating appliance
(a)  does not have an opening less than 2.5 m from the floor; or
(b)  is not used to store a Class 1 or Class 2 petroleum product or as a service area where work on the fuel supply system of internal combustion engines or any dispensing, transferring or handling of Class 1 petroleum products is being performed; the bottom of the combustion chamber must be at least 500 mm above the floor and the heating appliance must be protected from impact;
(3)  the combustion air necessary for the appliance comes from outside the building;
(4)  the return air intake of a forced-air heating appliance is at least 1.25 m from the floor if it is located in a room listed as a hazardous area in Schedule II; and
(5)  the burner and combustion chamber of the equipment are at least 2.5 m from the floor, in an area used for dispensing, transferring or handling Class 1 petroleum products.
O.C. 220-2007, s. 1.
§ 3.  — Self-serve facilities
O.C. 220-2007, s. 1.
8.158. Every motor fuel dispenser in a self-serve facility must have a remote on and off control of a console type located within a building.
O.C. 220-2007, s. 1.
8.159. The console referred to in section 8.158 must
(1)  house the on and off controls of not more than 12 motor fuel dispensers;
(2)  allow not more than 8 dispenser nozzles to be used simultaneously; and
(3)  have an emergency master control that shuts off the dispensing of motor fuel to all dispensers simultaneously.
O.C. 220-2007, s. 1.
8.160. The console referred to in section 8.158 must be located at a distance that is
(1)  not more than 25 m from the motor fuel dispenser; or
(2)  not more than 35 m from the motor fuel dispenser if the attendant is able to monitor from the work station the use of the dispenser using a camera and screen electrically interlocked with the dispenser.
O.C. 220-2007, s. 1.
8.161. A pump island in a self-serve facility must have a two-way communication system between the attendant and the consumer.
O.C. 220-2007, s. 1.
8.162. The location of motor fuel dispensers referred to in section 8.158 must be within a 160 ° visual field from the console.
A dispenser not intended to be operated as a self-serve facility must not be located between the console and a self-serve dispenser.
An unattended motor fuel dispenser in a self-serve facility must be located on the island farthest from the console.
O.C. 220-2007, s. 1.
8.163. Signs posted in a self-serve facility must direct all heavy vehicles likely to block the line of vision of an attendant to refuel at the island farthest from the console.
O.C. 220-2007, s. 1.
8.164. The siting of a pump island in a self-serve facility must allow an attendant to monitor, from the work station, the use of the dispensing nozzles, unless the island has mirrors or cameras and a screen for that purpose.
O.C. 220-2007, s. 1.
§ 4.  — Unattended self-serve facilities
O.C. 220-2007, s. 1.
8.165. A sign at least 5 mm high stating the procedure to follow in the event of fire or a fuel spill must be conspicuously posted in the fuelling area in an unattended self-serve facility.
O.C. 220-2007, s. 1.
8.166. The fuelling area referred to in section 8.165 must have a drainage system able to collect motor fuel in that area in the event of a leak or spill.
The drainage system must consist of a concrete apron having a minimum 1% slope away from the pump island, an oil separator and a drain connecting the apron and the separator.
The oil separator must be of a capacity sufficient to accept rainwater flow from the apron and flow from the motor fuel dispenser having the greatest flow.
O.C. 220-2007, s. 1.
8.167. A coin, card or key-activated motor fuel dispenser that enables fuelling without the intervention of an attendant may be installed only in an unattended self-serve facility.
The flow of the unattended motor fuel dispenser must not exceed 70 L/min for motor fuel that is a Class 1 petroleum product or 180 L/min for motor fuel that is a Class 2 petroleum product.
The pump for such a dispenser must shut off automatically after 5 minutes of operation for motor fuel that is a Class 1 petroleum product and after 10 minutes for motor fuel that is a Class 2 petroleum product.
O.C. 220-2007, s. 1.
8.168. An unattended motor fuel dispenser situated near a bulk plant must be located at a distance that is
(1)  not less than 6 m from the fenced area of the bulk plant;
(2)  not less than 30 m from an aboveground tank; and
(3)  not less than 15 m from the loading and unloading facilities of the bulk plant.
O.C. 220-2007, s. 1.
§ 5.  — Marina outlets
O.C. 220-2007, s. 1.
8.169. A motor fuel dispenser in a marina outlet and the piping installed on a dock, wharf, pier or pontoon must be protected, where applicable, from impact such as impact from a water craft or seaplane.
O.C. 220-2007, s. 1.
8.170. The piping of a tank installed at an elevation above the base of the motor fuel dispenser must have a solenoid check valve at the tank outlet that is designed to open only when the dispenser is being operated.
If the piping is connected to a submersible pump with a leak detection system, the solenoid check valve must be installed between the tank and the leak detection system.
O.C. 220-2007, s. 1.
8.171. Every motor fuel dispenser in a marina outlet must have a safety valve that meets the requirements of section 8.149.
O.C. 220-2007, s. 1.
8.172. A tank that is to store motor fuel must be situated not less than 10 m from the boundary of the littoral zone within the meaning of the Protection Policy for Lakeshores, Riverbanks, Littoral Zones and Floodplains (chapter Q-2, r. 35).
O.C. 220-2007, s. 1; O.C. 87-2018, s. 54.
8.173. An underground tank installed at a marina outlet must have an observation well situated between the outlet and the shore and extend 900 mm below the low water line.
O.C. 220-2007, s. 1.
8.174. A tank that is to store motor fuel for trade purposes may not be installed aboveground unless it is surrounded by a dike and a fence that meet, where applicable, the requirements of sections 8.61 to 8.63, paragraphs 1 and 3 of section 8.65 and paragraphs 1 and 2 of section 8.217.
O.C. 220-2007, s. 1.
8.175. Piping installed on a dock, wharf, pier or pontoon must have 2 accessible valves designed to stop the supply of motor fuel from the shore. One of the valves must be located less than 350 mm from the edge of the dock, wharf, pier or pontoon, and the second valve must be located less than 350 mm from the connection with the dispenser.
O.C. 220-2007, s. 1.
8.176. Piping installed between the shore and piers or wharves must be provided with swing joints or flexible connections to enable the pier or wharf and shore piping to move independently without strain on the piping.
O.C. 220-2007, s. 1.
8.177. A motor fuel dispenser installation for a marina outlet must be installed
(1)  on the shore; or
(2)  on a dock, wharf, pier or pontoon.
A motor fuel dispenser must, if installed on a floating pontoon, be as close as practicable to the shore so that the piping installed above the water is as short as practicable.
O.C. 220-2007, s. 1.
§ 6.  — Airport outlets
O.C. 220-2007, s. 1.
8.178. An airport outlet tank that is to store aviation fuel must be installed in compliance with the following requirements:
(1)  it must have a manhole;
(2)  all its metallic components must be bonded and grounded in accordance with Chapter V it the tank is fibreglass;
(3)  it must have a 1% slope if it is a horizontal tank;
(4)  it must have a water draw-off device located at the lowest point on the tank; and
(5)  it must have a floating suction system, if it is to store aviation turbine fuel.
O.C. 220-2007, s. 1.
8.179. The use of galvanized steel piping that is to contain aviation fuel during construction work is prohibited.
O.C. 220-2007, s. 1.
8.180. Piping installed downstream of the filter must be of a non-corrosive material that is
(1)  aluminum alloy;
(2)  reinforced glass fibre;
(3)  stainless steel; or
(4)  flexible hosing.
O.C. 220-2007, s. 1.
8.181. A contractor or owner-builder may not install tanks to store aviation fuel included in petroleum products of various classes, unless the dispensers have grade selective nozzle spouts that meet the requirements of SAE AS Standard 1852 Nozzles and Ports-Gravity Fueling Interface Standard for Civil Aircraft, published by the Society of Automotive Engineers.
O.C. 220-2007, s. 1.
8.182. An aboveground tank must be sited so that the distance between the dike centre line and the airport complex is not less than 45 m.
In the case of double-walled tanks or contained tank assemblies, that distance must be measured between the outer tank shell or secondary containment and airport complex.
O.C. 220-2007, s. 1.
8.183. A fill pipe installed on a tank that is to store aviation fuel must have a line strainer fitted with No. 40 or the equivalent of a No. 40 mesh basket; a line strainer with a No. 60 mesh basket must also be installed on the upstream side of each meter, pump and piece of equipment requiring a line strainer.
O.C. 220-2007, s. 1.
8.184. A petroleum equipment installation dispensing aviation fuel in an airport outlet must have a filtering system comprising at least one of the following:
(1)  a 5 µm filter;
(2)  a 15 P.P.M. water separator filter; or
(3)  a filter monitor.
O.C. 220-2007, s. 1.
8.185. An installation dispensing aviation fuel that is at a height exceeding 1.6 m must have an obstacle light.
O.C. 220-2007, s. 1.
8.186. An installation dispensing aviation fuel in an airport outlet must have a ground conforming to the requirements of Chapter V.
O.C. 220-2007, s. 1.
8.187. A sign that indicates, for fuelling personnel, the operating procedure for petroleum equipment dispensing aviation fuel and the testing procedures that must be conducted for that purpose must be posted in the airport outlet.
O.C. 220-2007, s. 1.
8.188. Piping containing petroleum products installed in an airport outlet must be marked in compliance with API Standard 1542 Identification Markings for Dedicated Aviation Fuel Manufacturing and Distribution Facilities, Airport Storage and Mobile Fuelling Equipment, published by the American Petroleum Institute.
O.C. 220-2007, s. 1.
8.189. An aviation fuel dispenser installed in an airport outlet must be marked in compliance with the standard referred to in section 8.188. The lettering must be at least 80 mm in height.
O.C. 220-2007, s. 1.
8.190. The requirements of section 8.145 as regards the distance between a fuel dispenser and a dock, wharf, pier or pontoon or approach thereto, sections 8.169 to 8.172 and those of sections 8.174, 8.175 and 8.177 also apply to an airport outlet from which an aircraft is fuelled on a body of water.
O.C. 220-2007, s. 1.
§ 7.  — User outlets
O.C. 220-2007, s. 1.
8.191. The flow of a motor fuel dispenser in a user outlet must be not more than 70 L/min for motor fuel that is a Class 1 petroleum product and not more than 180 L/min for motor fuel that is a Class 2 petroleum product.
O.C. 220-2007, s. 1.
DIVISION X
PROVISIONS APPLICABLE TO BULK PLANTS
O.C. 220-2007, s. 1.
§ 1.  — General
O.C. 220-2007, s. 1.
8.192. A bulk plant on an area subject to a high-velocity flood zone as determined in the land use planning and development plans or in an interim control by-law, adopted under the Act respecting land use planning and development (chapter A-19.1), must meet the following requirements:
(1)  each aboveground tank in the bulk plant must be installed in such a manner that the bottom is above the boundary of the littoral zone; and
(2)  a source of water must be available for tank ballast.
O.C. 220-2007, s. 1.
8.193. A gate and a loading and unloading ramp installed in a bulk plant and any place where petroleum equipment may cause the presence of flammable vapours must have a sign reading “DÉFENSE DE FUMER” or a pictogram similar to that appearing in Schedule I.
O.C. 220-2007, s. 1.
8.194. A valve of an aboveground line connected to a tank, the end of a petroleum product line and a fill pipe must be identified in compliance with the document entitled “Colour-Symbol System to Mark Equipment and Vehicles for Product Identification”, published by the Canadian Fuels Association.
O.C. 220-2007, s. 1; O.C. 87-2018, s. 55.
§ 2.  — Loading and unloading facilities
O.C. 220-2007, s. 1.
8.195. A facility for loading and unloading petroleum products in a bulk plant must be sited
(1)  in the case of a Class 1 petroleum product, at a distance of more than 8 m from any aboveground tank, building or property line where the facility is located; or
(2)  in the case of a Class 2 or Class 3 petroleum product, at a distance of more than 5 m from any aboveground tank, building or property line where the facility is located.
The distance must be calculated from the down tube of a loading arm extending into the tank truck or from the connection of the tank truck when it is filled by bottom loading and the shelter for personnel and pumps must be considered integral parts of the facility.
O.C. 220-2007, s. 1.
8.196. At a loading or unloading facility for tank cars, the minimum distance from any railway line must be in conformance with Flammable Liquids Bulk Storage Regulations (C.R.C., c. 1148).
O.C. 220-2007, s. 1.
8.197. Combustible material must be at a distance of not less than 5 m from the loading and unloading facilities and from the fill and gauge pipes erected or installed in a bulk plant.
O.C. 220-2007, s. 1.
8.198. The vent of a tank storing a Class 1 petroleum product in a bulk plant must be installed at a distance of not less than 8 m from the loading and unloading facility and from a parking area.
O.C. 220-2007, s. 1.
8.199. The loading or unloading ramp and every tank in a bulk plant must be situated at a distance of not less than 40 m from the fire station of the bulk plant.
The ramp must be of metal or concrete.
O.C. 220-2007, s. 1.
8.200. The loading arm on a facility for unloading a tank truck or a tank car through the manhole must be long enough to extend down not less than 200 mm from the bottom of the cargo tank and have a valve that must be held open manually.
O.C. 220-2007, s. 1.
8.201. Piping on a facility for unloading a tank truck or a tank car by means of a pump must have a soft-seat check valve.
O.C. 220-2007, s. 1.
8.202. The fill pipe on the tank of a facility used to store petroleum products must have a tight-fill connection using a hose.
O.C. 220-2007, s. 1.
8.203. The hose on a facility dispensing petroleum products in a container of not more than 225 litres designed to be moved must have a delivery nozzle of non-magnetic material provided with a manual trigger and an automatic shut-off device.
O.C. 220-2007, s. 1.
8.204. A loading and unloading facility in a bulk plant must have barriers that protect it from vehicle impact.
O.C. 220-2007, s. 1.
8.205. A loading and unloading facility must have a ground that meets the requirements of Chapter V, an electrical conductor and a clip making it possible to ground the cargo tank.
In the case of a key-operated bulk plant, the petroleum product can flow only if the grounding is effected.
O.C. 220-2007, s. 1.
8.206. A facility for filling a tank truck or tank car by bottom loading must
(1)  have been designed to limit the loading rate to not more than 3,000 L/min; and
(2)  have a preset meter.
O.C. 220-2007, s. 1.
8.207. A key-operated facility for loading a tank truck or tank car that is supplied by an aboveground tank in a bulk plant must have a remote control shut-off valve that opens only when the motor of the loading pump is operating.
The valve must be located at the outlet of the tank if the bulk plant is to be left unattended.
O.C. 220-2007, s. 1.
8.208. The portion of the loading and unloading area of a bulk plant used to park a cargo tank during loading or unloading must,
(1)  in the case of Class 1 or Class 2 petroleum products, have a collection system for the products; the system must consist of a concrete apron having a minimum 1% slope away from the pump island in a direction opposite the loading or unloading ramp, an oil separator and a drain connecting the apron and the separator; or
(2)  in the case of Class 3 petroleum products or Class 1, Class 2 and Class 3 petroleum products in bulk plants located north of the 53rd parallel of north latitude and bulk plants in a designated location, be liquid-tight and designed in such manner that a spilled product remains confined.
O.C. 220-2007, s. 1.
§ 3.  — Pumping
O.C. 220-2007, s. 1.
8.209. A positive displacement pump in a bulk plant must have a safety valve and a return bypass to the pump supply.
O.C. 220-2007, s. 1.
8.210. A centrifugal pump in a bulk plant must have a check valve on the pump outlet, if it is without a built-in safety valve.
O.C. 220-2007, s. 1.
8.211. A pump in a bulk plant that is subject to vehicle impact must be protected by a barrier or by a concrete or metal curb.
O.C. 220-2007, s. 1.
8.212. A pump or motor may not be installed below a tank or in a building in which a petroleum product is handled.
O.C. 220-2007, s. 1.
8.213. A pump in a bulk plant must,
(1)  if it is above ground level and outside buildings,
(a)  be located not less than 3 m from the property lines where the pump is situated; and
(b)  be located not less than 1.5 m from any opening in the main building of the bulk plant; and
(2)  be located not less than 8 m from any ignition source.
O.C. 220-2007, s. 1.
8.214. A pump in a bulk plant must be installed so that vibration is not transmitted to the petroleum product installations connected to it.
O.C. 220-2007, s. 1.
8.215. An electric motor for a pump in a bulk plant must have at least 2 controls, one of which must be in the control box at a distance of not less than 15 m from each loading or unloading ramp and from each tank.
O.C. 220-2007, s. 1.
8.216. In a bulk plant, the pit housing an underground pump and the multiple connection pipes of a submerged pump must be enclosed within a casing made of metal or concrete and be installed in such manner that it does not transmit external loads to the pump, tank or piping.
O.C. 220-2007, s. 1.
§ 4.  — Fencing
O.C. 220-2007, s. 1.
8.217. A fence must be erected around a bulk plant and
(1)  be not less than 1.8 m high;
(2)  be of firmly meshed metal wire of a gauge not smaller than USSMSG No. 9, if it is made of steel with mesh openings not greater than 150 mm on the side;
(3)  be not less than 150 mm from the ground, including its gates;
(4)  be fixed to metal poles driven solidly into the ground; and
(5)  have at least two gates to enable traffic of road vehicles that meet the requirements of paragraphs 1, 2 and 4, as remote from each other as practicable and that have locking devices.
O.C. 220-2007, s. 1.
DIVISION XI
OFFENCES
O.C. 220-2007, s. 1.
8.218. Every contravention of any of the provisions of this Chapter constitutes an offence, except section 8.14.
O.C. 220-2007, s. 1.
CHAPTER IX
AMUSEMENT RIDES AND DEVICES
O.C. 364-2012, s. 1.
DIVISION I
INTERPRETATION
O.C. 364-2012, s. 1.
9.01. In this Chapter, unless the context indicates otherwise, “Code” means CSA Standard CAN/CSA Z267-00, Code de sécurité concernant les jeux et les manèges, including Appendix C concerning tests, and CSA Standard CAN/CSA Z267-00, Safety Code for Amusement Rides and Devices, including Appendix C concerning tests, prepared and published by the Canadian Standards Association.
O.C. 364-2012, s. 1.
DIVISION II
APPLICATION
O.C. 364-2012, s. 1.
9.02. Subject to the exemptions and amendments set out in this Chapter, the Code and provisions of this Chapter apply to the design, construction procedure and all construction work carried out on an amusement ride or device referred to in the Code and designed as facilities intended for use by the public in section 9.03, including their vicinity.
The following are exempted from the application of this Chapter:
(1)  amusement rides and devices on a base that are designed to be used as coin-operated rides or devices;
(2)  children’s playspaces and equipment complying with CSA Standard CSA Z614, Children’s Playspaces and Equipment, published by the Canadian Standards Association, in public areas, play spaces and other similar areas;
(3)  air-supported amusement devices and structures;
(4)  soft contained play systems complying with ASTM Standard ASTM F 1918, Standard Safety Performance Specification for Soft Contained Play Equipment, published by the American Society for Testing and Materials;
(5)  recoil tethered rides (bungee);
(6)  water slides;
(7)  sliding playground and equipment that depend on snow or ice;
(8)  dry slides;
(9)  aerial courses, track rides and zip-lines;
(10)  go-kart tracks, karts and race tracks;
(11)  mechanical bulls;
(12)  hot-air balloons;
(13)  live animal rides; and
(14)  haunted houses, labyrinths and rides in darkness with no mechanical devices to move users.
O.C. 364-2012, s. 1.
9.03. For the purposes of section 10 of the Act, the amusement rides and devices referred to in CSA Standard CAN/CSA Z267-00, Safety Code for Amusement Rides and Devices, are facilities intended for use by the public.
O.C. 364-2012, s. 1.
DIVISION III
REFERENCES
O.C. 364-2012, s. 1.
9.04. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 364-2012, s. 1; O.C. 1419-2021, s. 2.
DIVISION IV
GENERAL
O.C. 364-2012, s. 1.
9.05. The design, construction procedure and construction work carried out on an amusement ride or device must be carried out so that the amusement ride or device provides, in normal conditions of use and when used as intended, satisfactory levels of performance while minimizing danger to the public.
O.C. 364-2012, s. 1.
9.06. A contractor or owner-builder must, during construction work carried out on an amusement ride or device,
(1)  use construction procedures suitable for the work;
(2)  use the materials, appliances, equipment or devices designed for that purpose;
(3)  take the necessary precautions to prevent risk of accidents; and
(4)  comply with the manufacturer’s requirements regarding installation and assembly.
O.C. 364-2012, s. 1.
DIVISION V
DECLARATION OF WORK
O.C. 364-2012, s. 1.
9.07. A contractor or owner-builder must, at least 45 days before the date of the beginning of construction work, except maintenance or repair work, on an amusement ride or device referred to in section 9.02, declare the work to the Board with the following information and documents:
(1)  the name, address, telephone number and licence number of the contractor or owner-builder who will carry out the work;
(2)  the name, address and telephone number of the person for whom the work is carried out;
(3)  the name, address and telephone number of the person who prepared the plans and specifications related to the construction work;
(4)  the address of the site and nature of the work;
(5)  the type, trademark and model of the amusement ride or device, the name of the manufacturer and the technical specifications of the amusement ride or device;
(6)  the date on which, the place where and the list of the tests and inspections were conducted together with the name of the person recognized under section 9.13 who will sign the certificate of conformity required under section 9.12; and
(7)  the expected date on which the amusement ride or device will be put into service for the public.
The declaration may be made on the form provided by the Board or on any other document clearly and legibly written for that purpose and updated if any changes are made to the information provided.
Despite the first paragraph of this section, a contractor or owner-builder who carries out demolition work on an amusement ride or device must declare the work to the Board with the information and documents required under subparagraphs 1 to 5.
O.C. 364-2012, s. 1.
9.08. Despite the first paragraph of section 9.07, a contractor or owner-builder who carries out alteration work recommended by the manufacturer on an amusement ride or device following an incident or an accident involving a similar amusement ride or device must, within 2 working days after the end of the alteration work, declare the work to the Board with the information required under subparagraphs 1 to 5 of that paragraph, and the nature of the work carried out.
O.C. 364-2012, s. 1.
DIVISION VI
PLANS AND SPECIFICATIONS
O.C. 364-2012, s. 1.
9.09. A contractor or owner-builder may not begin construction work, except maintenance, repair or demolition work, on an amusement ride or device, referred to in section 9.02, unless plans and specifications have been prepared for the work.
The plans must be drawn to scale and must, with the specifications, indicate the nature and scope of the work. The plans and specifications must include the manufacturer’s information and instructions on the erection and assembly of the amusement ride or device.
The plans and specifications must be signed and sealed by an engineer within the meaning of the Professional Code (chapter C-26), authorized to do so.
O.C. 364-2012, s. 1.
9.10. Despite section 9.09, a contractor or owner-builder may begin alteration work required following the issue of a bulletin by the manufacturer on an amusement ride or device if the contractor or owner-builder has in his or her possession the manufacturer’s instructions, drawings and testing procedures concerning the work.
O.C. 364-2012, s. 1.
9.11. A contractor or owner-builder must, at the end of the construction work provided for in section 9.09, give the final plans of the amusement ride or device to the owner.
O.C. 364-2012, s. 1.
DIVISION VII
CERTIFICATE OF CONFORMITY
O.C. 364-2012, s. 1.
9.12. A contractor or owner-builder must, at the end of the construction work on an amusement ride or device, except maintenance, repair, demolition or alteration work recommended by the manufacturer, provide the Board with a certificate of conformity with this Chapter produced and signed by a person recognized under section 9.13, stating that
(1)  the design, construction procedure and construction work on the amusement ride or device were carried out in accordance with the Code and this Chapter, and the amusement ride or device may be safely put into service for the public;
(2)  the installations related to the amusement ride or device, in particular, fences, ramps, stairs, guardrails, operator and supervisor stations, signals and signs, comply with the Code and this Chapter;
(3)  equipment, wiring and electrical connectors are certified as complying with Chapter V of the Construction Code (chapter B-1.1, r. 2);
(4)  the manufacturer’s instructions concerning the assembly have been followed;
(5)  the tests and inspections provided for in the Code for the amusement ride or device, by the designer and manufacturer, have been performed and their results are satisfactory;
(6)  the information on the maintenance, operation and periodic testing required from the designer and manufacturer by the Code have been provided to the owner; and
(7)  the pressure vessels are identified by their registration number.
The certificate must contain a declaration from the manufacturer certifying that the amusement device or its prototype has been designed and manufactured so as to withstand loads and constraints under all loading and operating conditions.
The certificate must also specify the information on the information plate required under Clause 4.1.3 of the Code, the components inspected, the means used and the data used as the basis for drawing up the certificate, the address of the site where the amusement ride or device was installed, the nature of the work, the date of the tests and inspections and the name and title of the person who performed them, the date of signature, name, address and telephone number of the recognized person that produced the certificate and the date of the end of the construction work.
The recognized person must provide the Board with information from the designer and manufacturer on the maintenance, operation and periodic testing of the amusement ride or device to which the certificate applies.
The certificate of conformity may be made on the form provided for that purpose by the Board or on any other document containing the same information clearly and visibly written for that purpose.
O.C. 364-2012, s. 1.
9.13. The following persons whose professional activities are related to amusement rides and devices may be recognized by the Board to produce and sign the certificate of conformity required under section 9.12:
(1)  an engineer who is a member of the Ordre des ingénieurs du Québec; and
(2)  the holder of a temporary licence issued under the Engineers Act (chapter I-9).
O.C. 364-2012, s. 1.
9.14. A person who applies for recognition must
(1)  file an application with the Board that contains
(a)  the person’s name, home address, telephone number and membership number of the person’s professional order or the person’s temporary licence number; and
(b)  the description of the experience acquired in activities related to the field of design, construction or inspection of amusement rides or devices; and
(2)  pay the fees of $643.62.
O.C. 364-2012, s. 1.
9.15. The recognition of a person may be revoked by the Board for the following reasons:
(1)  the person no longer meets the conditions set out in section 9.13; or
(2)  the person has been convicted of an offence under paragraph 2, 3, 4 or 7 of section 194 of the Building Act (chapter B-1.1).
O.C. 364-2012, s. 1.
DIVISION VIII
AMENDMENTS TO THE CODE
O.C. 364-2012, s. 1.
9.16. The CAN/CSA Z267-00 Code, published by the Canadian Standards Association, is amended
(1)  by replacing the words “inspection”, “inspect” and “inspected” wherever they appear by the words “verification”, “verify” and “verified” with the necessary modifications;
(2)  by revoking Clause 1.4;
(3)  by revoking Clause 1.5;
(4)  by adding the following at the end of Clause 5.3.2: “The amusement ride or device must be equipped with a device to restrain passengers under all loading and operating conditions planned for the amusement ride or device, in compliance with ASTM Standard ASTM F2291-04, Standard Practice for Design of Amusement Rides and Devices, published by the American Society for Testing and Materials. The restraining device must be of a type that cannot be inadvertently released when the amusement ride or device is in operation and be inaccessible to passengers.”;
(5)  by adding the following at the end of Clause 5.3.3: “The following clearances are considered to comply with the requirements of Clause 5.3.3:
(1)  600 mm between a structural element and any point of the vehicle in contact with the passenger;
(2)  1,200 mm of vertical clearance between the seat and any fixed structural member located above such seat; and
(3)  2,000 mm of vertical clearance between the floor in front of the seat and any fixed structural member located above such floor, where the passenger is not restrained in the vehicle seat.
This section does not apply to a vehicle which is enclosed or has an openwork wire mesh preventing a 38-mm diameter spherical object from going through or 50-mm in the case of an amusement device to be used solely by adults.”;
(6)  by replacing Clause 5.4.3 by the following:
5.4.3 Welding and welding procedures must comply with CSA Standard CSA W59, Welded Steel Construction, or CSA Standard CSA W59.2, Welded Aluminum Construction, published by the Canadian Standards Association.
Welding must be performed by a qualified welder from a company that is certified according to CSA Standard CSA W47.1, Certification of Companies for Fusion Welding of Steel, or CSA Standard CSA W47.2, Certification of Companies for Fusion Welding of Aluminum, published by the Canadian Standards Association.”;
(7)  by adding the following paragraph at the end of Clause 5.4.5: “A rope tensioning device must be designed so that it will not release itself during the operation of an amusement ride or device and be equipped with a positive action manual reset slack rope device.”;
(8)  by revoking Clause  5.4.6;
(9)  by adding the following paragraph at the end of Clause 5.5.4: “Lighting of a minimum of 100 lx at floor level must be installed at the loading and unloading areas and entrances and egresses.”;
(10)  by adding the following at the end of Clause 5.5.5: “No part of an amusement ride or device is to come nearer to an electrical conductor of more than 750 V than the distance specified in the following table:


Voltage (in volts) Distance (in metres)


Less than 125,000 5


125,000 or more 30


.”;
(11)  by adding the following after Clause 5.7.2:
5.7.3 A signal system must be provided during the starting or stopping of an amusement ride or device where the loading or unloading areas cannot be seen from the operating controls.
5.7.4 An amusement ride or device must be equipped with an emergency stop device that causes the stoppage of the amusement ride or device and the application of the brakes that complies with CSA Standard CAN/CSA Z431-M89, Colours of Indicator Lights and Push Buttons, published by the Canadian Standards Association and marked “Arrêt de secours”. The device must be of the push-pull type and be provided with contacts which open by positive mechanical separation.”;
(12)  by adding the following after Clause 5.8.3:
5.8.4 An amusement ride or device must be equipped with devices to prevent the vehicles from making translatory or rotary movements when they are at a standstill in the loading or unloading area or be equipped, to that effect, with a parking brake, except in the case of a vehicle composed of a suspended seat.
5.8.5 A vehicle designed to be towed and each drive mechanism of such a vehicle must be equipped with backstop devices preventing any vehicle in the towing zone from moving back more than 150 mm.
5.8.6 An amusement ride or device must be installed so that it does not exceed the operating limits specified by the designer or manufacturer or be equipped, to that effect, with a speed limiting device.”;
(13)  by adding the following after Clause 5.10:
5.11 Where a suspension or coupling device for a vehicle or any other moving part of an amusement ride or device is used as a single retainer, a safety retainer must be installed on the vehicle or the moving part to ensure the safety of passengers, unless the single coupling device has a safety factor of at least 10.
5.12 Glazing used in a vehicle must be certified as complying with CGSB Standard CAN/CGSB B-12.1-M90, Tempered or Laminated Safety Glass, or CGSB Standard CAN/CGSB B-12.12-M90, Plastic Safety Glazing Sheets, published by the Canadian General Standards Board (CGSB).
5.13 Every amusement ride or device equipped with a sloping channel and a receptacle basin, which uses water to generate or reduce the speed of a vehicle must be provided with devices allowing for the control of the water level of the basin and the water flow of the flume’s feed pump.
In addition, the devices must automatically stop the operation of the amusement ride or device if the water level or flow does not comply with that required for the operation of the amusement ride or device.
5.14 Every amusement ride or device of the “roller coaster ride” type must comply with the following requirements:
(1)  be installed so as to allow for the presence of only one vehicle or only one train of vehicles, at the same time, in the space between each braking system along its path;
(2)  the nuts used to lock the wheels of a vehicle must be of the castle type and be locked with cotter pins;
(3)  every coupling device for vehicles must be locked, and any bolts, nuts or locks which are used must be equipped with a wire to prevent loosening or disengaging; and
(4)  operating controls must be located so as to allow the operator to monitor the entire loading and unloading area.
5.15 Where users are moved in darkness inside an enclosure or in the case of an amusement ride or device completely enclosed, the enclosure must be equipped with
(1)  a smoke alarm bearing a seal of approval from Underwriters’ Laboratories of Canada (ULC) and installed in compliance with the manufacturer’s instructions. The proper working order of the smoke alarm must be checked at every assembly of a portable amusement ride or device and every month in other cases;
(2)  signs, visible from the vehicle, indicating egresses;
(3)  an emergency lighting system of not less than 10 lx at floor level and egress signs, activated automatically when the main source of electrical supply is interrupted.
In addition, each egress must bear the inscription “SORTIE” in lettering at least 25 mm high and, if locked, it must be possible to open it from the inside without a key.”.
O.C. 364-2012, s. 1.
DIVISION IX
OFFENCE
O.C. 364-2012, s. 1.
9.17. Every contravention of any of the provisions of this Chapter, except section 9.14, constitutes an offence.
O.C. 364-2012, s. 1.
CHAPTER X
BATHING PLACES
O.C. 115-2013, s. 1.
DIVISION I
INTERPRETATION
O.C. 115-2013, s. 1.
10.01. In this Chapter, unless the context indicates otherwise,
(a)  “accessory” means a water slide, a dry slide or any structure in or projecting into a bathing place; (accessoire)
(b)  “wading pool” means an indoor or outdoor artificial pool with a water depth not exceeding 600 mm; (pataugeoire)
(c)  “swimming pool” means an indoor or outdoor artificial pool having a water depth exceeding 600 mm; (piscine)
(d)  “diving platform” means a horizontal rigid and non-flexible, stationary diving structure; (plate-forme)
(e)  “deck” means the surface immediately surrounding a swimming pool, to which bathers have direct access when leaving the water. (promenade)
O.C. 115-2013, s. 1.
DIVISION II
APPLICATION
O.C. 115-2013, s. 1.
10.02. The provisions of this Chapter apply to all construction work on a swimming pool or wading pool constructed in a building to which Chapter I of the Construction Code (chapter B-1.1, r. 2) applies, or constituting a facility intended for use by the public designated by section 10.03.
O.C. 115-2013, s. 1.
10.03. For the purposes of section 10 of the Building Act (chapter B-1.1), the following are facilities intended for use by the public:
— swimming pools and wading pools constructed and operated as bathing places, offered to the general public or a restricted group of persons;
— outdoor swimming pools of an immovable used as a dwelling unit that has more than 8 dwelling units, a rooming house that has more than 9 rooms or a supervised residence used to shelter or accommodate more than 9 persons
(a)  the area of which exceeds 100 m2; or
(b)  that have a diving board.
O.C. 115-2013, s. 1.
DIVISION II.1
REFERENCES
O.C. 1419-2021, s. 4.
10.03.01. A reference in this Chapter to a standard or a code is a reference to that standard or code as adopted by the chapter of the Construction Code or Safety Code (chapter B-1.1, r. 3) or other regulation made under the Building Act (chapter B-1.1) that refers to it.
O.C. 1419-2021, s. 4.
DIVISION III
SWIMMING POOLS
O.C. 115-2013, s. 1.
§ 1.  — Construction
O.C. 115-2013, s. 1.
10.04. The basin, deck, pipe-work and accessories of a swimming pool must be constructed with materials that are inert, non-toxic for humans, impermeable, durable and non-corrosive, with smooth surfaces that may easily be cleaned, unless otherwise indicated in this Chapter.
O.C. 115-2013, s. 1.
10.05. The basin of the swimming pool, taking its useful life into account, must
(a)  be constructed in such a way as to have sufficient structural resistance and integrity to safely withstand all the loads, effects and other forces that may be reasonably expected;
(b)  be designed to avoid resonance; and
(c)  be waterproof, durable and smooth, without cracks, corners or sharp edges.
O.C. 115-2013, s. 1.
10.06. The walls of a pool must be vertical down to 150 mm from the bottom for the section that is between 750 mm and 1,400 mm deep, and vertical down to 75 mm from the bottom for the section that is less than 750 mm deep, except for the section occupied by stairs or a ladder.
O.C. 115-2013, s. 1.
10.07. The walls of a pool must be equipped with recessed fittings in the shallow end, at a minimum distance of 300 mm before the change in slope of the pool bottom from gentle to steep, to which a safety line supported by buoys can be attached to warn bathers of the change in slope.
O.C. 115-2013, s. 1.
10.08. The maximum slope of the pool bottom must be
(a)  300 mm vertically in 3.6 m horizontally for a water depth less than 1,400 mm; and
(b)  300 mm vertically in 900 mm horizontally for a water depth between 1,400 mm and 2,000 mm.
O.C. 115-2013, s. 1.
10.09. A ladder or stairs must be installed
(a)  in the shallow end of the pool if the difference in elevation between the bottom of the pool and the deck is greater than 600 mm; and
(b)  on both sides of the deep end of the pool.
O.C. 115-2013, s. 1.
10.10. Swimming pool stairs have steps
(a)  with a uniform rise between 125 and 200 mm;
(b)  with a uniform tread of at least 250 mm;
(c)  with nosing in a contrasting colour; and
(d)  with a non-slip surface.
The stairs may not project into the pool.
O.C. 115-2013, s. 1.
10.11. A swimming pool ladder must have rungs
(a)  with a minimum length of 300 mm between the rails; and
(b)  with a non-slip surface.
O.C. 115-2013, s. 1.
10.12. Swimming pools must be surrounded by a deck adjacent to the top of the walls. The deck must
(a)  have a non-slip surface;
(b)  have a minimum clear width of 1.5 m;
(c)  provide a clear passage of at least 900 mm behind a springboard, diving platform or accessory and its supporting structure;
(d)  provide a clear passage of at least 900 mm in front of or behind a structural column; and
(e)  be equipped with a guardrail having a height of 1,070 mm if a drop greater than 600 mm exists between the level of the deck and the level of the adjacent surface.
Despite the first paragraph, in the section of the pool where the water is 1,400 mm or less in depth, there may be a deck along one side of the pool only, provided that no point in the pool is further than 3.6 m from the edge of the deck.
O.C. 115-2013, s. 1.
10.13. The submerged surfaces of the pool must be white or a pastel colour, except for the markings indicating swimming corridors.
Basins used exclusively for underwater diving may be another colour.
O.C. 115-2013, s. 1.
10.14. The markings for swimming corridors must be a contrasting colour, no more than 250 mm wide and placed in a single direction.
O.C. 115-2013, s. 1.
10.15. The water depth must be clearly marked on the deck in letters at least 100 mm high, in a contrasting colour, on each side of the basin and opposite
(a)  the deepest point;
(b)  the change in slope between the gentle and steep bottom slopes; and
(c)  the shallow end.
O.C. 115-2013, s. 1.
10.16. A black circle 150 mm in diameter must be placed at the deepest point of the swimming pool.
O.C. 115-2013, s. 1.
10.17. A “no diving” sign must be placed on the deck, using a pictogram or letters at least 100 mm high, in the section where the water depth is 1,400 mm or less.
O.C. 115-2013, s. 1.
10.18. A swimming pool may be constructed with a slope towards the centre from the deck and such pool is not subject to sections 10.06 to 10.13, 10.15 and 10.16, provided that
(a)  the bottom is covered with a rigid white or pastel finish;
(b)  the maximum slope of the bottom is 300 mm vertically in 3.6 m horizontally;
(c)  the water depth does not exceed 1.8 m;
(d)  the entire pool is surrounded by a deck that is at least 3 m wide;
(e)  the bottom of the pool is marked, along its length, with a broken black line 250 mm wide; and
(f)  there is no diving platform, springboard or accessory.
O.C. 115-2013, s. 1.
§ 2.  — Water treatment
O.C. 115-2013, s. 1.
10.19. The water supply and recirculation system for a swimming pool must be separated from the drinking water system by a shut-off valve and backflow preventer, in accordance with the provisions of Chapter III “Plumbing” of this Code.
O.C. 115-2013, s. 1.
10.20. The devices in the filtration system, overflows and floor drains in the deck must be connected indirectly to the drainage system in accordance with the provisions of Chapter III “Plumbing” of this Code.
O.C. 115-2013, s. 1.
10.21. Pipes, fittings, joints and filtration equipment in the water recirculation system of a swimming pool must be designed to resist at least 1 1/2 times the maximum rated operating pressure.
O.C. 115-2013, s. 1.
10.22. The water recirculation system of a swimming pool must be designed to avoid trapping any swimmer who comes into contact with a drain or suction outlet. The system must be equipped, for each pump, with
(a)  at least 2 drain or suction outlets at least 1 m apart;
(b)  a device to limit the water flow through the openings in each outlet to the maximum prescribed by the drain cover manufacturer;
(c)  an emergency shut-off easily accessible to swimmers at a clearly indicated location; and
(d)  drain or suction outlets covered by drain covers that comply with the standard “Suction Fittings for Use in Swimming Pools, Wading Pools, Spas, Hot Tubs, and Whirlpool Bathtub Appliances”, ASME 112.19.8 M, and designed so that bathers cannot remove them without tools.
O.C. 115-2013, s. 1.
§ 3.  — Lighting and access
O.C. 115-2013, s. 1.
10.23. An outdoor pool used after sunset or an indoor pool must have
(a)  a lighting system which illuminates the underwater areas of the pool and also illuminates all parts of the deck and water surface with an illumination level of at least
i.  30 decalux, for an indoor swimming pool; and
ii.  10 decalux, for an outdoor swimming pool; and
(b)  an emergency lighting system supplied by a generator or a recharging battery with an automatic relay to illuminate the bottom of the pool, the deck and the changing room for an average illumination of at least 1 decalux at floor level, the steps and water surface in case of a failure of the electric lighting power supply. Any self-contained emergency lighting units must comply with CSA Standard CSA C22.2 No. 141-M, “Unit Equipment for Emergency Lighting”.
O.C. 115-2013, s. 1.
10.24. A swimming pool must be designed in such a way as not to be accessible to the public outside opening hours. The enclosure used for that purpose must have a minimum height of 1.20 m and have no fixture, projection or opening enabling it to be climbed. It may, however, have openings provided that a spherical object of 100 mm in diameter cannot pass through them or, in the case of a chain link fence, that each link measures no more than 38 mm.
O.C. 115-2013, s. 1.
10.25. When the deck of the swimming pool is adjacent to an area used for purposes other than bathing, an enclosure with a minimum height of 900 mm must separate the deck from that area. The enclosure used for that purpose must have no fixture, projection or opening enabling it to be climbed. It may, however, have openings provided that a spherical object of 100 mm in diameter cannot pass through them or, in the case of a chain link fence, that each link measures no more than 38 mm. The enclosure must be equipped at each entrance with a lockable barrier.
O.C. 115-2013, s. 1.
§ 4.  — Springboards, platforms and accessories
O.C. 115-2013, s. 1.
10.26. The installation of a springboard or diving platform must comply with the minimum dimensions indicated in the table in Schedule III. The reference point when measuring is the plummet or vertical line passing through the centre of the end of the springboard or diving platform.
O.C. 115-2013, s. 1.
10.27. A springboard, diving platform or accessory
(a)  must be accessible only by stairs or a ladder; and
(b)  must have a walking surface designed with a non-slip finish, and the nosing of the springboard or diving platform must be in a contrasting colour.
O.C. 115-2013, s. 1.
10.28. A springboard, diving platform or accessory that is 3 m high or more may only be accessible by stairs equipped with a lockable barrier to control access at the deck level.
O.C. 115-2013, s. 1.
10.29. The part of a springboard, diving platform or accessory that is not over water and that is 1 m high or more must be equipped, on both sides, with a guardrail that prevents bathers from passing through but allows them to be seen by the safety supervisors.
O.C. 115-2013, s. 1.
10.30. The ladder of a springboard, diving platform or accessory must
(a)  have rungs of a minimum length of 300 mm between the rails; and
(b)  have rungs with a non-slip surface.
The part of the ladder above a height of 1 m must be equipped with handrails that comply with paragraphs a and b of section 10.33.
O.C. 115-2013, s. 1.
10.31. The stairs of a springboard, diving platform or accessory must have steps
(a)  with a uniform rise between 125 and 200 mm;
(b)  with a tread between 210 and 355 mm;
(c)  with a uniform depth between 235 and 355 mm;
(d)  with nosing in a contrasting colour; and
(e)  with a non-slip surface.
Each flight of stairs must have a vertical height of not more than 3.7 m and be equipped, between each flight, with a landing of a length and width at least equal to the width of the stairs.
The stairs of a springboard, diving platform or accessory that is 1 m high or more must be equipped with a guardrail and a handrail.
O.C. 115-2013, s. 1.
10.32. The guardrails must
(a)  not have any opening allowing a spherical object of over 100 mm in diameter to pass through;
(b)  have a height of at least
i.  1,070 mm in the part of a springboard, diving platform or accessory that is not over water and that is 1 m high or more;
ii.  920 mm measured vertically to the top of the guardrail from a line drawn through the outside edges of the stair nosings;
iii.  1,070 mm around the landings.
O.C. 115-2013, s. 1.
10.33. The handrails must
(a)  be not more than 40 mm in diameter;
(b)  be continuous with the handrail around all horizontal areas; and
(c)  have a minimum height between 865 and 965 mm on stairs.
O.C. 115-2013, s. 1.
10.34. A swimming pool equipped with a diving platform exceeding 3 m in height must be designed exclusively for diving or, to delimit the diving area, be equipped with a rigid barrier or recessed fittings to which a double safety line supported by buoys can be attached, the two lines being at least 300 mm apart. The minimum distance between the pool wall under the diving platform and the double safety line or rigid barrier must be as indicated in the following table:


Height of the diving platform Distance from the pool wall
m m


5 11.5


7.5 12.5


10 15


O.C. 115-2013, s. 1.
10.35. A device to agitate the surface water must be installed in order to allow divers to distinguish the water surface under diving installations of 3 m or more.
O.C. 115-2013, s. 1.
10.36. The surface of a submersible platform must be free of cracks and corners, have a non-slip finish and be of a contrasting colour.
O.C. 115-2013, s. 1.
DIVISION IV
WADING POOLS
O.C. 115-2013, s. 1.
10.37. The submerged area of a wading pool must be white or of a pastel colour. The bottom of the wading pool must have a non-slip surface.
O.C. 115-2013, s. 1.
10.38. Sections 10.04, 10.05 and 10.19 to 10.25 apply to wading pools, with the necessary modifications.
Despite the first paragraph, section 10.24 does not apply to a wading pool that is emptied before the supervisor leaves.
O.C. 115-2013, s. 1.
DIVISION V
OFFENCES
O.C. 115-2013, s. 1.
10.39. Every contravention of any of the provisions of this Chapter constitutes an offence.
O.C. 115-2013, s. 1.
SCHEDULE I
(ss. 8.134 and 8.193)
PICTOGRAMS
O.C. 220-2007, s. 1.
SCHEDULE II
(s. 8.157)
HAZARDOUS AREAS IN WHICH A HEATING APPLIANCE MAY NOT BE INSTALLED
(1) The area around the end of the fill pipe of an underground tank, up to 0.5 m from ground level and within a horizontal radius of 3 m;
(2) The area around the vent outlet of an underground tank, up to a radius of 5 m in all directions;
(3) A dispensing area, up to 0.5 m from ground level;
(4) The area around a motor fuel dispenser, up to 1.5 m in all directions;
(5) A service area, up to 0.5 m above ground or floor level over the entire surface area;
(6) A zone for transferring Class 1 petroleum products, up to 1.5 m in all directions;
(7) A salesroom, storeroom or washroom, if an opening connects to any area described above; and
(8) Any space, pit or box below ground level and located wholly or partly in any area described above.
O.C. 220-2007, s. 1.
SCHEDULE III
(s. 10.26)
MINIMUM DIMENSIONS OF SPRINGBOARD AND DIVING PLATFORM INSTALLATIONS

Springboard Diving platform
? 0.5 m 0.5 m < h
? 1 m 3 m 1 m
0.6 m in width 3 m
0.6 m in width 5 m
1.5 m in width 7.5 m
1.5 m in width 10 m
2.5 m in width
A. From plummer to pool wall behind 1.50 1.50 1.50 1.25 1.25 1.50 1.50 1.50
AA. From plummet back to plummet for platform below 0.75 0.75 0.75
B. From plummet to side pool wall 2.50 2.50 3.50 2.30 2.90 4.25 4.50 5.25
C. From plummet to adjacent plummet 2.40 2.40 2.60 1.95 2.10 5/3
2.50 m
5/1
2.50 m 7. 5/5
2.50 m
7.5/3/1
2.50 m 10/7. 5/5
2.75 m
10/3 or 1
2.75 m
D. From plummet to pool wall ahead 9.00 9.00 10.25 8.00 9.50 10.25 11.00 13.50
E. From plummet to ceiling above 5.00 5.00 5.00 3.50 3.50 3.50 3.50 5.50
F. Clearance above, behind and to each side of plummet 2.50 2.50 2.50 2.75 2.75 2.75 2.75 2.75
G. Clearance above and ahead of plummet 5.00 5.00 5.00 5.00 5.00 5.00 5.00 6.00
H. Depth of water at plummet 3.05 3.50 3.80 3.40 3.60 3.80 4.50 5.00
J/K. Distance and depth ahead of plummet at a distance of 4.60
minimum depth of 2.90 at a distance of 6.00
minimum depth of 3.40 at a distance of 6.00
minimum depth of 3.70 5.0 dist.
3.30 depth 6.00
3.50 6.00
3.70 8.00
4.40 12.00
4.75
L/M. Distance and depth to each side of plummet at a distance of 2.50
minimum depth of 3.40 at a distance of 2.50
minimum depth of 3.40 at a distance of 3.25
minimum depth of 3.70 2.05
3.30 2.65
3.50 4.25
3.70 4.50
4.40 5.25
4.75
N. Maximum angle of slope to reduce pool depth beyond area of required depth 30 degrees 30 degrees 30 degrees 30 degrees
P. Maximum angle of slope to reduce ceiling height beyond area of required clearance 30 degrees 30 degrees 30 degrees 30 degrees

The dimensions indicated in rows B and C of the table in Schedule III apply to diving platforms having the width indicated in the table. For diving platforms of greater width, the dimensions must be increased by one-half of the extra width.
O.C. 115-2013, s. 1.
TRANSITIONAL
2021
(O.C. 1419-2021) SECTION 5. Despite section 1.02, introduced by section 1 of this Regulation, Chapter I of the Construction Code (chapter B-1.1, r. 2) as it read on 7 January 2022 may apply to the construction or alteration of a building, as defined in that Chapter, provided that the work begins before 8 July 2023.
(O.C. 65-2021) SECTION 2. The former provisions of Chapter III, Plumbing, of the Construction Code (chapter B-1.1, r. 2), as they read on 26 March 2021, may apply to construction work on a plumbing system that begins before 27 September 2021.
2018
(O.C. 722-2018) SECTION 3. Despite the foregoing, the provisions of Chapter V Electricity of the Construction Code (chapter B-1.1, r. 2), as they read on 30 September 2018, may apply to construction work to an electrical installation that begins before 1 April 2019.
(O.C. 990-2018) SECTION 2. Despite section 1, the provisions of Chapter I of the Construction Code as amended by Order in Council 347-2015 dated 15 April 2015 may be applied to the construction of a building or its alteration, as defined in that Chapter, provided that the work started before 1 September 2020.
2015
(O.C. 347-2015) SECTION 3. Despite section 1.02, it is permitted to apply the provisions of Chapter I of the Construction Code approved by O.C. 293-2008 of 19 March 2008 to the construction of a building or its alteration, as defined in this Chapter, provided that the work began before 13 December 2016.
SECTION 4. Despite sections 1.07 and 2, a prefabricated building whose manufacturing is completed before 13 December 2016 may be sold, rented, exchanged or acquired without approval or certification if the construction work to the electrical installation was carried out by an electrical contractor.
2013
(O.C. 115-2013) SECTION 2. Despite section 1, the Regulation respecting safety in public baths (chapter B-1.1, r. 11) may be applied to the construction of a bathing place or its transformation, as defined in the Chapter provided that the work has begun before the 18th month of the date of coming into force of this Regulation (before 14 September 2014).
2012
(O.C. 858-2012) SECTION 9. Despite the foregoing, the provisions of the Regulation respecting energy conservation in new buildings (chapter E-1.1, r. 1) may be applied to the construction and enlargement of a building having a building area not more than 600 m2, a building height not more than 3 storeys and whose major occupancy is Group C and housing only dwellings, on the following conditions:
(a) the plans and specifications are filed with a municipality for the purpose of obtaining a construction permit before 30 August 2012; and
(b) work begins before 28 November 2012.
REFERENCES
O.C. 953-2000, 2000 G.O. 2, 4203 and 4437
O.C. 961-2002, 2002 G.O. 2, 4636
O.C. 875-2003, 2003 G.O. 2, 2730
O.C. 1385-2003, 2003 G.O. 2, 3903
O.C. 895-2004, 2004 G.O. 2, 2833
O.C. 872-2005, 2005 G.O. 2, 4342
O.C. 873-2005, 2005 G.O. 2, 4347
O.C. 1172-2005, 2005 G.O. 2, 5127
O.C. 120-2006, 2006 G.O. 2, 1118
O.C. 986-2006, 2006 G.O. 2, 3569
O.C. 220-2007, 2007 G.O. 2, 1140
O.C. 577-2007, 2007 G.O. 2, 1953
S.Q. 2007, c. 3, s. 72
O.C. 293-2008, 2008 G.O. 2, 975
O.C. 294-2008, 2008 G.O. 2, 1022
O.C. 939-2009, 2009 G.O. 2, 3231
O.C. 1062-2010, 2010 G.O. 2, 3864
O.C. 838-2011, 2011 G.O. 2, 2487
O.C. 364-2012, 2012 G.O. 2, 1151
O.C. 635-2012, 2012 G.O. 2, 2080
O.C. 858-2012, 2012 G.O. 2, 2617
O.C. 1202-2012, 2012 G.O. 2, 3663
O.C. 115-2013, 2013 G.O. 2, 384
O.C. 1263-2012, 2013 G.O. 2, 127
O.C. 92-2014, 2014 G.O. 2, 402
O.C. 30-2014, 2014 G.O. 2, 137
O.C. 347-2015, 2015 G.O. 2, 583
O.C. 87-2018, 2018 G.O. 2, 688
O.C. 990-2018, 2018 G.O. 2, 3238
O.C. 722-2018, 2018 G.O. 2, 2482
O.C. 991-2018, 2018 G.O. 2, 3254
O.C. 486-2020, 2020 G.O. 2, 1425
O.C. 65-2021, 2021 G.O. 2, 509
O.C. 1419-2021, 2021 G.O. 2, 4703
O.C. 1596-2021, 2022 G.O. 2, 6