$$GHG_i = \sum_j \left(V_{ve-s} + V_{ve-ss} - V_{CO2-N2} - V_{res} \right)_j \times MF_i \times \rho_i \times 0.001$$

Where:

 GHG_i = Annual emissions of greenhouse gas *i* attributable to gas well venting during completions or workovers, in metric tons;

j = Gas well;

 V_{ve-s} = Quantity of natural gas emitted during sonic flow conditions from venting of well *j*, calculated in accordance with subparagraph *a*, in cubic metres at standard conditions;

 V_{ve-ss} = Quantity of gas emitted during subsonic flow conditions from venting of well *j*, calculated in accordance with subparagraph *b*, in cubic metres at standard conditions;

 V_{CO2-N2} = Quantity of CO₂ or N₂ injected into well *j* during completion or workover, in cubic metres at standard conditions; V_{res} = Quantity of natural gas from well *j* sent to the transmission or distribution system during completion or workover, in cubic metres at standard conditions;

 $MF_i = Molar$ fraction of greenhouse gas *i* in the vented gas from reciprocating compressor, determined in accordance with paragraph 3 of QC.33.4;

 ρ_i = Density of greenhouse gas *i* that is 1.893 kg per cubic metre for CO₂ and 0.690 kg per cubic metre for CH₄ at standard conditions;

0.001 = Conversion factor, kilograms to metric tons;

 $i = CO_2 \text{ or } CH_4;$