$$CH_{4} = \frac{A_{e}}{\rho_{ref}} \sqrt{\frac{2000 \cdot K}{K - 1}} P_{a} \rho_{a} \left[\left(\frac{P_{Atm}}{P_{a}} \right)^{2/K} - \left(\frac{P_{Atm}}{P_{a}} \right)^{(K+1)/K} \right] \times Cd \times t \times \left[\frac{T_{SC} \times P_{ge}}{T_{ge} \times P_{SC}} \right] \times \rho_{ref} \times 0.001$$

Where:

 CH_4 = Annual CH_4 emissions attributable to third party pipeline puncture incident when the flow is not choked, in metric tons; A_e = Leak area in the pipe determined in accordance with paragraph 3 of QC.29.4.9, in square metres;

 $K = Specific heat ratio of CH_4$, namely 1.299;

 ρ_{ref} = Density of CH₄, namely 0.690 kg per cubic metre at standard conditions;

 ρ_a = Density of CH₄ inside the pipe at the puncture location, in kilograms per cubic metre;

 P_a = Absolute pressure inside the pipe, determined in accordance with paragraph 2 of QC.29.4.9, in kilopascals;

 P_{Atm} = Absolute pressure at the damage point, in kilopascals;

R = Universal gas constant, namely 8.3145 kPa m³ per kilmole per Kelvin;

Cd = Discharge coefficient, determined by the emitter or a default value of 1;

t = Duration of venting following puncture incident, in hours;

 T_{SC} = Temperature at standard conditions of 293.15 kelvin;

 T_{ge} = Temperature of gas emitted, in kelvin;

 P_{ge} = Absolute pressure of gas emitted, in kilopascals;

 P_{SC} = Pressure at standard conditions of 101.325 kPa;

0.001 = Conversion factor, kilograms to metric tons.