$$GHG_{i} = \sum_{j=1}^{n} \left[N_{j} \times V_{j} \times \left(\frac{T_{SC}}{T_{B} \times P_{SC}} \right) \times \left(P_{b1} - P_{b2} \right) \right] \times MF_{i} \times \rho_{i} \times 0.001$$

Where:

 GHG_i = Annual emissions of greenhouse gas i attributable to natural gas emissions to the atmosphere from equipment blowdown vent stacks, in metric tons;

n = Total number of types of equipment;

j = Type of equipment with the same gas volume in the blowdown equipment chambers between isolation valves;

N_i = Annual number of blowdowns for each equipment type j, determined in accordance with QC.29.4.3;

 V_j = Total volume of blowdown equipment chambers, between isolation valves, for equipment type j, determined in accordance with QC.29.4.3, in cubic metres;

T_{SC} = Temperature at standard conditions of 293.15 kelvin;

 $T_{\rm B}$ = Temperature at blowdown conditions, in kelvin;

P_{b1}= Absolute pressure before blowdown, in kilopascals;

P_{b2} = Absolute pressure after blowdown or a value of 0 if the purge gas used is not CO₂ or CH₄, in kilopascals;

 P_{SC} = Pressure at standard conditions of 101.325 kPa;

MF_i = Molar fraction of greenhouse gas *i* in natural gas, determined in accordance with paragraph 3 of QC.29.4;

 ρ_i = Density of greenhouse gas *i* that is 1.893 kg per cubic metre for CO₂ and 0.690 kg per cubic metre for CH₄ at standard conditions;

0.001 = Conversion factor, kilograms to metric tons;

 $i = CO_2$ or CH_4 .