$$GHG_i = \sum_{i} \left[N_j \times EF_j \times t_j \right] \times MF_i \times \rho_i \times 0.001$$

Where:

 GHG_i = Annual emissions of greenhouse gas *i* attributable to low bleed or intermittent bleed natural gas pneumatic device venting, in metric tons;

j = Type of low bleed or intermittent bleed natural gas pneumatic device;

 $N_i = Number of pneumatic devices j determined in accordance with QC.29.4.2;$

 EF_j = Emission factor for pneumatic device j as specified in Tables 29-1 and 29-2 in QC.29.6, in cubic metres per hour at standard conditions, either

- indicated in Table 29-1, 29-2 or 29-6 in QC.29.6, for low bleed or intermittent bleed pneumatic devices that maintain operating conditions such as liquid level, pressure, pressure differential or temperature, or

- calculated using equation 29-5.1, for intermittent bleed pneumatic devices;

- provided by the manufacturer for operating conditions for intermittent bleed pneumatic devices used for compressor startup. When that data is not available, use the data for a similar device. The emitted start-up gas volume provided by the device manufacturer may be used to replace the $[EF_j \times t_j]$ product in the equation;

 MF_i = Molar fraction of greenhouse gas *i* in natural gas, determined in accordance with paragraph 3 of QC.29.4;

 ρ_i = Density of greenhouse gas i, of 1.893 kg per cubic metre for CO₂ and 0.690 kg per cubic metre for CH₄ at standard conditions;

0.001 =Conversion factor, kilograms to metric tons; $i = CO_2$ or CH_4 .